
1 1

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com 153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Intel’s Virtualization Extensions (VT-x)

“So you want to build a hypervisor?”

Intel’s Virtualization Extensions (VT-x)

“So you want to build a hypervisor?”

Mr. Jacob Torrey

May 13, 2014

Dartmouth College

Mr. Jacob Torrey

May 13, 2014

Dartmouth College

@JacobTorrey

torreyj@ainfosec.com

Linkedin.com/in/jacobtorrey

2 2

Introduction Introduction

 In efforts to ease system consolidation and optimize

resource use, Intel (and ARM, AMD…) have provided

hardware extensions to support virtualization of

disparate OSes on a single physical machine

 This lecture aims to provide a short introduction to

these extensions and how to utilize them in future

research (there is a lot of emergent/weird machine

behavior here)

 Slides will be provided for reference, please don’t

hesitate to jump in with questions at any time

3 3

Full vs. Paravirtualization Full vs. Paravirtualization

 In this talk, focus will mostly be on full virtualization

◦ Guest OS is unmodified, generally thinks it is running without

VMM

 Paravirtualization is where modifications to the guest

OS are made to simplify

◦ For example: disk driver talks to VMM directly, rather than

trapping on MMIO/PIO requests

◦ PV drivers still used on fully virtualized VMMs for speed and

management advantages

 Intel VT-x enables full virtualization

◦ From architecture side, more interesting (to me at least)

4 4

Outline Outline

 Gap Analysis – From OS to VMM

 Technical Overviews

◦ General architecture

◦ Memory management/isolation

◦ VMCS mechanics

◦ Exit conditions

◦ Asides: TXT & SMM

 Interesting Research

◦ Recovering private keys from VM side-channels

◦ MoRE – VT-x + TLB splitting

◦ NoHype – Virtualization sans VMM

 Possible Future Work Ideas

◦ Distributed NUMA SSI

◦ ELFbac model for VMM introspection

 Concluding Remarks

 Questions

5 5

Gap Analysis Gap Analysis
“Ring 0 to Ring -1” “Ring 0 to Ring -1”

 In short, a virtual machine monitor (VMM aka

hypervisor) is a kernel where OSes are ‘applications’

◦ Can abstract memory (guest physical addresses to machine

physical)

◦ Multiplex between OSes and trap on specified

exceptions/violations

◦ Provide a consistent & abstracted view of hardware

 Well-designed architecture (mostly) cleans a lot of

cruft needed for legacy support

◦ Originally no support for real-mode

◦ 64-bit aware, no PAE needed

◦ Allows VMM to be very small code base

6 6

VT-x in a Figure VT-x in a Figure

 Shows VMM ‘slot’, and the process for transitioning

to and from from multiple guests

 From Intel SDM 3C – Official VT-x specification

document

7 7

Technical Overview Technical Overview
General Architecture General Architecture

 Separated into VMX root and non-root mode

◦ VMXON, VMXOFF and VM Exits/Enters switch between two

modes

◦ Can be initiated from either Ring 0 or SMM (“Ring -2”)

 VMM sets up task_struct-like VM control structure

(VMCS) for each VM

◦ Specifies what events will trigger VM Exit

 Some events always trigger VM Exit

◦ CPUID, RDTSC, etc…

◦ Can be used to determine if a OS is being maliciously virtualized

8 8

Technical Overview Technical Overview
General Architecture II General Architecture II

 VMM is protected from rogue guests, and guests

benefit from some protections from each other

◦ Performance and cost were driving factors in implementation

 Couples with other Intel technologies for greater

assurances

◦ VT-d: Prevents hardware devices from DMAing memory to

arbitrary memory

◦ TXT: Allows a measured launch of a hypervisor at any point and

creates a dynamic root-of-trust

◦ EPT/VPID: Allows hardware to take a bigger role in memory and

cache separation and management

9 9

Technical Overview Technical Overview
VMM Architecture VMM Architecture

 VMMs are either Type-I or Type-II

 Examples of Type-I

◦ Xen, VMWare ESX, Hyper-V

 Examples of Type-II

◦ VirtualBox, KVM, VMWare Player

Hardware Hardware Hardware Hardware

Hypervisor Hypervisor Host Operating System Host Operating System

Hypervisor Hypervisor Guest Guest Guest Guest

Guest Guest Guest Guest

10 10

Technical Overview Technical Overview
VMM Architecture II VMM Architecture II

 Different types lead to different hardware multiplexing

models

 Type-I VMMs generally have a control domain (dom0)

which can directly talk to hardware and multiplex all

requests from guests – don’t want to need drivers in

VMM

◦ More secure and isolated, no full OS in TCB

 Type-II VMMs use the hardware drivers of host OS

◦ Simpler to install, just an application on host OS

11 11

Technical Background

Technical Background

Virtual Memory Virtual Memory

 Paging provides an operating system with a means to

organize physical memory while at the same time,

providing executables with an abstracted, contiguous

view of memory

Viralpatal.net

12 12

Technical Overview Technical Overview
Page Translation Page Translation

 Every memory access requires several memory bus

transactions to perform page translation

◦ This is slow!

Get PD Entry

PD Data

Get PT Entry

PT Data

Get Memory

Memory Data

CPU Memory

13 13

Technical Overview Technical Overview
Translation Lookaside Buffer

Translation Lookaside Buffer

 The solution to this problem is to cache previous

translations in a buffer called the Translation

Lookaside Buffer (TLB)

Access Memory Access Memory

Is

Translation

in TLB?

Is

Translation

in TLB?

Get Memory Get Memory

Get PDE Get PDE Get PTE Get PTE Cache Cache
No

Yes

14 14

Technical Overview Technical Overview
Memory Management Memory Management

 Extended page tables (EPT) adds additional levels to

traditional virtual memory hierarchy

◦ Maps “guest physical” to “machine physical”

◦ Triggers EPT Fault VM Exit instead of page fault

◦ Allows OS to manage memory without VMM interference

◦ Implements new instructions similar to INVLPG

 VM process ID (VPID) adds a word to each TLB line

with the VM ID (VMM = ID 0) to prevent performance

hit from VM Exit TLB flush

15 15

Technical Overview Technical Overview
VMCS Mechanics VMCS Mechanics

 Think of a VMCS as a task state segment (TSS) or

task_struct for OS VMs

 One VMCS PTR per processor, points to currently

active VMCS

 VMCS stores guest and host state, exit conditions

and pointers to other related structures

 Not directly accessible to memory reads/writes,

requires a specialized instruction to access

(VMREAD/VMWRITE)

16 16

Technical Overview Technical Overview
VM Exit Conditions VM Exit Conditions

 Among others, the VMCS can be configured to trap

on:

◦ Interrupts

◦ Memory faults (akin to page faults)

◦ IO access (port IO)

◦ Certain privileged instructions

• MOV to control registers

• RDMSR/WRMSR

• RDRAND

• Etc…

 When trapping to VMM, provides all guest

registers/state and exit condition

17 17

Technical Aside Technical Aside
TXT & SMM TXT & SMM

 Intel trusted execution technology (TXT) provides the

ability to establish a dynamic root-of-trust

◦ Sets TPM (hardware crypto co-processor) into special mode as

well as CPU(s) and launches measured launch environment

◦ Can detect tampering of hypervisor or OS

◦ Removes legacy BIOS and additional untrusted software from

trusted computing base (TCB)

 Intel system management mode (SMM) is a stealthy

execution environment (“ring -2”) for chipset

manufacturer code to live

◦ Fully hidden in HW from OS/hypervisor

◦ SMRAM inaccessible

◦ Can host a 2nd VMM that virtualizes chipset code

18 18

Interesting Research Interesting Research
Private key side-channel leakage Private key side-channel leakage

 VT-x may provide strong isolation, but side-channels

still exist

◦ Timing

◦ Shared processor cache

◦ IO

 Extracted a private key being used in a VM from

another co-resident VM on the Xen hypervisor

◦ Used cache timing (similar to AES attack) to figure out what

memory other VM was accessing

◦ Able to recover ElGamal private key in lab setting

 Reminder that VT-x is not designed for total isolation

19 19

Technical Background Technical Background
TLB TLB

 TLB is physically two separate entities, one for code,

one for data

20 20

Interesting Research Interesting Research
Measurement of running executables Measurement of running executables

 Built upon J. Butler’s Shadow Walker rootkit to split

TLB to provide periodic measurements of dynamic

code applications

 Transparently segregates code and data fetches to

different regions of memory

 Can detect code-injection attack almost instantly

 DARPA Cyber Fast Track effort

21 21

Interesting Research Interesting Research
NoHype NoHype

 Looked at method to remove VMM from trusted

computing base – by doing away with the VMM all-

together

 Allocates resources directly to VMs at boot, then

removes itself from memory, only leaving default

handler to terminate VM

 Interesting way to (mis)use existing technologies to

gain an unexpected benefit

22 22

Possible Future Work Ideas Possible Future Work Ideas
Invite me to your conference talks! Invite me to your conference talks!

 NUMA SSI

◦ Show that it is possible to execute unmodified NUMA OS on a

number of computers using VT-x as a way to hide details of

system

◦ The complexity of the Intel MMU is already Turing-complete, with

VT-x, it is capable of completing changing its apparent hardware

architecture via software

 ELFbac VMM

◦ ELFbac (Bangert et al) increased OS introspection into intent of

ELF applications to increase security

◦ Linux kernel modules are ELF files running in ring 0, able to

bypass memory protections and kernel-level defenses

◦ Thin hypervisor shim (no hardware emulation) to introspect in

similar way and enforce intent on kernel-code

23 23

Concluding Remarks Concluding Remarks

 Hopefully this provided enough of an overview of Intel

VT-x for you to feel confident to play with it

 I have a simple hypervisor which I built on for MoRE

for anyone who is interested

◦ Windows 7 x86 kernel driver

◦ Loads thin hypervisor into VMM slot

 Don’t hesitate to contact me with questions or to

bounce ideas around

24 24

Questions? Questions?

 Bedankt!

