
153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Cluck Cluck: On Intel’s Broken Promises*

Mr. Jacob Torrey (@JacobTorrey)
8/5/2014
BSidesLV 2014

*Not just Intel, all PCIe-compliant systems

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Thesis/Disclaimer

} Thesis: The PCIe specification allows
software with sufficient privileges to
break-out of virtual memory

}  Disclaimer: Please jump in at any time!
Opinions and rude comments my own, not
those of my employer

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

About Me

}  Sr. Research Engineer at Assured Information
Security in Denver, CO
◦  Shameless plug: we’re hiring!

}  Leads low-level computer architectures team
◦  Built custom hypervisor for DARPA
◦  Built BIOS
◦  Likes C & assembly

}  Lover of the outdoors
◦  Aconcagua here I come!

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Outline

}  Background Concepts
}  The Problem

◦  Goal
◦  A catch-22

}  The Solution
◦  PCIe Enhanced Configuration Access Mechanism (ECAM)
◦  Take advantage of the poor CPU/MCH communication channels
◦  Some math to map
◦  Caveats

}  Why this happened
}  Future Work/Importance

◦  But wait! There’s more!

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Terms

}  Virtual Memory
◦  Allows for a process to think it is running in it’s own

4GB address space (32-bit). Prevents processes
from interfering with OS and others

}  MCH – Memory Controller Hub
◦  Provides the CPU with a simplified view of system

memory and memory-mapped IO space
}  Memory Mapped IO

◦  Accessing hardware devices as if they were physical
memory regions – Newer and faster

}  Port IO
◦  Accessing hardware devices through the CPU

instructions IN and OUT – Older and slower

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Terms II

}  TLB - Translation Look-aside Buffer
◦  A small CPU cache that stores recently used virtual

memory translations
}  PAE – Physical Address Extensions

◦  Provides 32-bit operating systems the ability to
support more than 4G of memory through an ugly
hack that expands addresses to 36-bits

}  PCI Configuration Space
◦  A portion of the PCI card’s memory used to store

configuration information
}  PCIe ECAM

◦  Extended configuration space for PCIe devices
}  CR3 Register

◦  Tells the CPU where to look for the page directory
when converting virtual addresses to physical

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Virtual Memory

}  (Non-PAE 32-bit for pedantic viewers)

•  Uses the CR3 register in concert with tables in memory to convert virtual
addresses to physical

•  Alternatively you can add an extra level of indirection through the use of an
intermediary page table.

Offset PDE #

CR3
PDE

+
4M Page

(Physical Memory)
+

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Virtual Memory Security

}  Paging/virtual memory is a protective feature/
promise
◦  First code in will be able to control system – usually OS

}  Unless you can access the pages tables, you
are locked out (until now)
◦  Can’t add mappings to page tables unless you have a mapping to

the page table

}  Protects against certain classes of attack

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Cluck Cluck Goal

}  Goal: Map in arbitrary physical memory
◦  Requires modifying page tables – need to know where they are in virtual

memory

}  Can be kernel shell-code, live memory forensics, etc.

}  Have ring-0 access, but confined to OS-controlled
mappings
◦  Cannot access MMIO devices for example

}  OS independent

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Problem

}  Only know where in physical memory (CR3) the page
tables are

}  Cannot map in the page tables without having the
page tables mapped in already
◦  The OS usually has a hard-coded value (0xC0000000 in many

Windows systems)
◦  OS-specific attacks are lame, let’s exploit the architecture!

}  You do not know where your code is executing since
you cannot access the page tables

OH MY!

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

PCIe ECAM

}  Need control over just 32-bits of memory at a
known physical address
◦  This is the crux
◦  Can bootstrap a recursive mapping

}  Enhanced Configuration Access Mechanism
◦  PCIe has more configuration space per device
◦  Port I/O is slow
◦  Need a way to access it faster

}  ECAM shadows device configuration space into
physical memory
◦  Base address is stored in PCIEXPBAR register

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Solution

}  Construct a PDE that maps in the page directory
(recursive entry)
◦  Use the CR3 physical address and mark it as present/RW/PS

}  Utilize Port IO to insert new PDE into PCI
configuration space
◦  We have just modified what the CPU thinks is physical memory

through port IO!

}  Determine physical location
◦  MCH stores the PCI base address in a configuration register (port

IO again!)

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Solution II

}  But where can our PDE go?
◦  Can’t trash random registers or system may crash!

}  Thank you Intel for the SCRATCHPAD DATA

register
◦  “This register is for software use, it has no functionality”
◦  32-bits of beautiful storage right in the MCH (D0:F0)
◦  Port I/O access to physical memory, write that PDE!

}  Determine physical location

◦  MCH stores the PCI base address (PCIEXBAR) in a configuration
register (port IO again!)

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Solution III

}  Change CR3 to point to PCI configuration space
◦  Kernel code is marked as Global, thus the TLB will cache the code

segment, so the box won’t crash
◦  The CPU doesn’t know that it’s doing anything wrong (using PCI config

like this is wrong) and the MCH doesn’t know how the CPU is using the
memory!!!

}  Scan the ‘real’ page directory (we know where it is
now) for an empty entry and put our PDE there

}  Switch CR3 back (yes this works!)

}  Profit! All in a few lines of ASM
◦  You have a virtual pointer to the page tables!

PCI Device

CR3

Page
Tables

Port IO

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Caveats

}  Alignment – PDE and CR3s are not aligned,
requires some bitwise operations

}  Needs PCI registers that are OK to be trashed
(like the MCH’s scratchpad register)
◦  There are plenty of options on modern systems

}  Requires Ring-0 and global pages (more on
this later!)

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Design Flaws

}  Classic case of feature creep

}  PCIe ECAM is for higher performance

}  Violates assumptions

}  This has happened before
◦  SMM caching bug
◦  Virtual Machine side-channels
◦  Etc…

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Intel Responds!

}  Spoke at length with Branco Rodrigo from
Intel
◦  Super smart guy, try to bump into him this week

}  His thoughts:
◦  Impressive attack
◦  Requires ring-0, thus you are already pwned
◦  Should provide education to OS developers, but not a critical

concern

}  Already possible for target OSes
◦  Cluck Cluck is NOT target specific!

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Improving Future Designs

}  Codify invariants and platform guarantees

}  Review when new feature is added

}  Modeling software such as Alloy is powerful
and can find stuff you might miss

}  Maintain an “adversarial mindset” whenever
building/designing

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Use Cases

}  Live forensics
◦  In an environment where you cannot know or trust the OS API
◦  Need full memory access
◦  Need memory mapped IO to export data

}  Hypervisors
◦  Provides a method to OS-independently map in memory

}  Kernel Shell-code
◦  You know, for… reasons J
◦  Want to pivot to access full system memory and MMIO devices

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Future Work

}  All theoretically possible

}  Extend to work on PAE/64-bit
◦  Will need to support more levels of indirection
◦  Larger scratch pad registers to be found

}  Remove global page requirements!
◦  Then can execute anywhere with kernel privileges

}  Remove Ring-0 requirements (still requires
IOPL)

•  Create Ring-3 -> Ring-0 code!

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Ring 3 -> Ring 0?
Or: don’t tell me my attack is pointless

}  Let’s see if we can abuse this even more
◦  Disclaimer: This hasn’t been implemented/tested, hence Future

Work

}  Background:
◦  DMA – Direct memory access

•  Needs port IO
•  Needs physical memory table of blocks -> addresses

◦  ATA – Disk drive mode used by legacy BIOSes and older drives

}  Goal: Ring 3 code with IOPL -> Ring 0
◦  Who cares? Perhaps on a BSD system with securelevel?

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

R3 -> 0 Overview

}  Use ATA DMA to overwrite kernel code or IVT:

}  Set up 8-byte table in ECAM pointing to target
memory address

}  Write payload to disk at known block

}  Use Port IO to tell DMA controller to read from
block (can have it read from memory first to
patch) and write to target address

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

2

1.0. IDE Bus Master
This document defines a register level programming interface for a bus master ATA compatible (IDE) disk
controller that directly moves data between IDE devices and main memory. By performing the IDE data
transfer as a bus master, the Bus Master Device offloads the CPU (no programmed IO for data transfer)
and improves system performance in multitasking environments.

Controllers that implement this programming interface will benefit from bundled software shipped with
major OS's limiting the amount of software development required to provide a complete product.

The master mode programming interface is an extension of the standard IDE programming model. This
means that devices can always be dealt with using the standard IDE programming model, with the master
mode functionality used when the appropriate driver and devices are present. Master operation is designed
to work with any IDE device that support DMA transfers on the IDE bus. Devices that only work in PIO
mode can be used through the standard IDE programming model.

The programming interface defines a simple scatter/gather mechanism allowing large transfer blocks to be
scattered to or gathered from memory. This cuts down on the number of interrupts to and interactions with
the CPU.

The interface defined here supports two IDE channels (primary and secondary). Individual controllers that
support more than two channels will need to appear to software as multiple controllers if the standard
drivers are to be used.

Master IDE controllers should default to Mode 0 Multiword DMA timings to ensure operation with DMA
capable IDE devices without the need for controller-specific code to initialize controller-specific timing
parameters.

1.1. Physical Region Descriptor Table
Before the controller starts a master transfer it is given a pointer to a Physical Region Descriptor Table.
This table contains some number of Physical Region Descriptors (PRD) which describe areas of memory
that are involved in the data transfer. The descriptor table must be aligned on a 4 byte boundary and the
table cannot cross a 64K boundary in memory.

1.2. Physical Region Descriptor
The physical memory region to be transferred is described by a Physical Region Descriptor (PRD). The
data transfer will proceed until all regions described by the PRDs in the table have been transferred.

Each Physical Region Descriptor entry is 8 bytes in length. The first 4 bytes specify the byte address of a
physical memory region. The next two bytes specify the count of the region in bytes (64K byte limit per
region). A value of zero in these two bytes indicates 64K. Bit 7 of the last byte indicates the end of the
table; bus master operation terminates when the last descriptor has been retired.

byte 3 byte 2 byte 1 byte 0

Memory Region Physical Base Address [31:1]Dword 0

Dword 1 EOT reserved Byte Count [15:1]

Memory Region0

0

Figure 1: Physical Region Descriptor Table Entry

DMA

}  Physical Region Descriptor Table:

}  Needs to be at known physical address
◦  If only there was a way to write to physical memory using port

IO…

}  Store target memory address

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

}  Use port IO to have DMA controller read/write
◦  Command byte: R/W and Start/Stop bits
◦  Status byte: Who cares…
◦  PRDT Address: Point to table we set up previously

}  Use port IO to communicate with ATA controller
◦  Use traditional port IO ATA/ATAPI spec
◦  Command bytes:

•  0xC8 Read DMA (28 bit LBA)
•  0x25 Read DMA (48 bit LBA)
•  0xCA Write DMA (28 bit LBA)
•  0x35 Write DMA (48 bit LBA)

DMA II

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

}  You now (theoretically) have full read and write
access to the entire memory space from ring 3 (with
IOPL)!

}  What you do with that power is left as an exercise for
the reader J

}  Caveats:
◦  Some newer drives are in AHCI mode and will not respond to ATA

commands
◦  Intel VT-d can block DMA to sensitive regions if present

Ring 3 -> Ring 0

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Conclusions

}  Nifty trick, not really a security hole in itself
◦  x86 is full of weird machines!

}  New architectural feature creates broken

invariant

}  Intel is actually really cool, hope they can take

some ribbing

}  Read more in PoC||GTFO 0x05!
◦  Coming to a printer near you soon!

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Questions

Thanks!

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Backup

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Modify Physical Mem

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Insert PDE I

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Insert PDE II

