devastating capability, revolutionary advantage

Cluck Cluck: On Intel’s Broken Promises™

Mr. Jacob Torrey (@JacobTorrey)

8/5/2014
BSidesLV 2014

*Not just Intel, all PCle-compliant systems

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Thesis/Disclaimer als

devastating capability, revolutionary advantage

» Thesis: The PCle specification allows
software with sufficient privileges to
break-out of virtual memory

» Disclaimer: Please jump in at any time!
Opinions and rude comments my own, not
those of my employer

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

About Me a|S

devastating capability, revolutionary advantage

» Sr. Research Engineer at Assured Information

Security in Denver, CO
o Shameless plug: we're hiring!

» Leads low-level computer architectures team
o Built custom hypervisor for DARPA
o Built BIOS
o Likes C & assembly

» Lover of the outdoors
o Aconcagua here | come!

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

» Background Concepts
» The Problem

o (Goal
o A catch-22
» The Solution

o PCle Enhanced Configuration Access Mechanism (ECAM)

o Take advantage of the poor CPU/MCH communication channels
o Some math to map

o Caveats

» Why this happened

» Future Work/Importance
o But wait! There's more!

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

devastating capability, revolutionary advantage

Virtual Memory

o Allows for a process to think it is running in it's own
4GB address space (32-bit). Prevents processes
from interfering with OS and others

MCH — Memory Controller Hub

> Provides the CPU with a simplified view of system
memory and memory-mapped |O space

Memory Mapped IO

o Accessing hardware devices as if they were physical
memory regions — Newer and faster

Port 10

o Accessing hardware devices through the CPU
instructions IN and OUT — Older and slower

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

TLB - Translation Look-aside Buffer

o A small CPU cache that stores recently used virtual
memory translations

PAE - Physical Address Extensions

o Provides 32-bit operating systems the ability to
support more than 4G of memory through an ugly
hack that expands addresses to 36-bits

PCI Configuration Space

o A portion of the PCI card’s memory used to store
configuration information

PCle ECAM
o Extended configuration space for PCle devices
CR3 Register

o Tells the CPU where to look for the page directory
when converting virtual addresses to physical

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

devastating capability, revolutionary advantage

» (Non-PAE 32-bit for pedantic viewers)

PDE # Offset

CR3 t
PDE 4M Page

(Physical Memory)

» Uses the CR3 register in concert with tables in memory to convert virtual
addresses to physical

* Alternatively you can add an extra level of indirection through the use of an
intermediary page table.

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Virtual Memory Security als

devastating capability, revolutionary advantage

» Paging/virtual memory is a protective feature/
promise

o First code in will be able to control system — usually OS

» Unless you can access the pages tables, you

are locked out (until now)

o Can’t add mappings to page tables unless you have a mapping to
the page table

» Protects against certain classes of attack

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

als

devastating capability, revolutionary advantage

» Goal: Map in arbitrary physical memory

o Requires modifying page tables — need to know where they are in virtual
memory

» Can be kernel shell-code, live memory forensics, etc.

» Have ring-0 access, but confined to OS-controlled
mappings
o Cannot access MMIO devices for example

» OS independent

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Problem a|S

devastating capability, revolutionary advantage

Only know where in physical memory (CR3) the page
tables are

Cannot map in the page tables without having the
page tables mapped in already

o The OS usually has a hard-coded value (0xC0O000000 in many
Windows systems)

o OS-specific attacks are lame, let’s exploit the architecture!

You do not know where your code is executing since
you cannot access the page tables

-9

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

O
devastating capability, revolutionary advantage

» Need control over just 32-bits of memory at a

known physical address

o This is the crux
o Can bootstrap a recursive mapping

ol 1 4
000
| o]

» Enhanced Configuration Access Mechanism
o PCle has more configuration space per device
o Port I/O is slow
o Need a way to access it faster

» ECAM shadows device configuration space into
physical memory
- Base address is stored in PCIEXPBAR register

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

devastating capability, revolutionary advantage

» Construct a PDE that maps in the page directory
(recursive entry)

o Use the CR3 physical address and mark it as present/RW/PS

» Utilize Port 10 to insert new PDE into PCI
configuration space

o We have just modified what the CPU thinks is physical memory
through port 10!

» Determine physical location

o MCH stores the PCI base address in a configuration register (port
|O again!)

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

devastating capability, revolutionary advantage

» But where can our PDE go?
o Can'’t trash random registers or system may crash!

» Thank you Intel for the SCRATCHPAD DATA

register
o “This register is for software use, it has no functionality”
o 32-bits of beautiful storage right in the MCH (D0:FO0)
o Port I/O access to physical memory, write that PDE!

» Determine physical location

o MCH stores the PCI base address (PCIEXBAR) in a configuration
register (port 10 again!)

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

devastating capability, revolutionary advantage

» Change CR3 to point to PCI configuration space

o Kernel code is marked as Global, thus the TLB will cache the code
segment, so the box won't crash

o The CPU doesn’t know that it's doing anything wrong (using PCI config
like this is wrong) and the MCH doesn’t know how the CPU is using the
memory!!!

» Scan the ‘real’ page directory (we know where it is
now) for an empty entry and put our PDE there

» Switch CR3 back (yes this works!)

» Profit! All in a few lines of ASM

> You have a virtual pointer to the page tables!

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

devastating capability, revolutionary advantage

» Alignment — PDE and CR3s are not aligned,
requires some bitwise operations

» Needs PCI registers that are OK to be trashed
(like the MCH’s scratchpad register)

o There are plenty of options on modern systems

» Requires Ring-0 and global pages (more on
this later!)

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Design Flaws als

devastating capability, revolutionary advantage

» Classic case of feature creep

» PCle ECAM is for higher performance

» Violates assumptions

» This has happened before
o SMM caching bug

> Virtual Machine side-channels
o Etc...

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Intel Responds! als

devastating capability, revolutionary advantage

» Spoke at length with Branco Rodrigo from

Intel
o Super smart guy, try to bump into him this week

» His thoughts:

o Impressive attack

o Requires ring-0, thus you are already pwned

o Should provide education to OS developers, but not a critical
concern

» Already possible for target OSes
o Cluck Cluck is NOT target specific!

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Improving Future Design als

devastating capability, revolutionary advantage

» Codify invariants and platform guarantees
» Review when new feature is added

» Modeling software such as Alloy is powerful
and can find stuff you might miss

» Maintain an “adversarial mindset” whenever
building/designing

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

als

devastating capability, revolutionary advantage

ol 1 4
000
| o]

» Live forensics
> |n an environment where you cannot know or trust the OS API
> Need full memory access
o Need memory mapped IO to export data

» Hypervisors
o Provides a method to OS-independently map in memory

» Kernel Shell-code

> You know, for... reasons ©
o Want to pivot to access full system memory and MMIO devices

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

devastating capability, revolutionary advantage

» All theoretically possible

» Extend to work on PAE/64-bit

o Will need to support more levels of indirection
o Larger scratch pad registers to be found

» Remove global page requirements!
o Then can execute anywhere with kernel privileges

» Remove Ring-0 requirements (still requires

|OPL)
* Create Ring-3 -> Ring-0 code!

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Ring 3 -> Ring 0? als

Or: don’t tell me my attack is pointless

devastating capability, revolutionary advantage

» Let’s see if we can abuse this even more

o Disclaimer: This hasn’t been implemented/tested, hence Future
Work

» Background:

o DMA — Direct memory access
* Needs port 10
* Needs physical memory table of blocks -> addresses

o ATA — Disk drive mode used by legacy BIOSes and older drives

» Goal: Ring 3 code with IOPL -> Ring 0

o Who cares? Perhaps on a BSD system with securelevel?

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

R3 -> 0 Overview a|S

» Use ATA DMA to overwrite kernel code or IVT:

» Set up 8-byte table in ECAM pointing to target
memory address

» Write payload to disk at known block

» Use Port 10 to tell DMA controller to read from
block (can have it read from memory first to
patch) and write to target address

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

devastating capability, revolutionary advantage

» Physical Region Descriptor Table:

| byte3 | byte2 | bytel | byteo
Dword 0 Memory Region Physical Base Address 31:11 |0 _>7 Memory Region
Dword1 | EOT reserved Byte Count [15:1]— | 0 N

» Needs to be at known physical address

o |f only there was a way to write to physical memory using port
1O...

» Store target memory address

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

devastating capability, revolutionary advantage

» Use port 10 to have DMA controller read/write
o Command byte: R/W and Start/Stop bits
o Status byte: Who cares...
o PRDT Address: Point to table we set up previously

» Use port IO to communicate with ATA controller
o Use traditional port IO ATA/ATAPI spec
o Command bytes:
- 0xC8 Read DMA (28 bit LBA)
* 0x25 Read DMA (48 bit LBA)

« OxCA Write DMA (28 bit LBA)
* 0x35 Write DMA (48 bit LBA)

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

O
devastating capability, revolutionary advantage

» You now (theoretically) have full read and write
access to the entire memory space from ring 3 (with
IOPL)!

Ring 3 -> Ring 0 832

» What you do with that power is left as an exercise for
the reader ©

» Caveats:

o Some newer drives are in AHCI mode and will not respond to ATA
commands

o Intel VT-d can block DMA to sensitive regions if present

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

O
ol I
000
[e]e]e]
devastating capability, revolutionary advantage

» Nifty trick, not really a security hole in itself
o x86 is full of weird machines!

» New architectural feature creates broken
invariant

» Intel is actually really cool, hope they can take
some ribbing

» Read more in PoC||GTFO 0x05!
o Coming to a printer near you soon!

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

devastating capability, revolutionary advantage

Thanks!

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

devastating capability, revolutionary advantage

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

Modify Physical Mem

59 ULONG MMIORange = 0;

60 __asm

61 {

62 pushad

63

64 // Utilize the scratch pad register as our mini-PDE
65 mov ebx, cr3

66 and ebx, O0xFFC00000 // This is going to hold our new PDE (The bits in CR3 with the least significant stuff removed)
67 or ebx, 0x83 // P | RW | PS

68

69 mov dx, 0x0cf8

70 mov eax, 0x800000DC // Offset 0x37 (0xDC / 4)
71 out dx, eax

72

73 mov dx, OxOCFC

74 mov eax, ebx

75 out dx, eax // Write our PDE

76

77 // Determine where in physical memory we can find the PDE
78 mov dx, 0x0cf8

79 mov eax, 0x80000060

80 out dx, eax

81

82 mov dx, OxOCFC

83 in eax, dx

84 mov MMIORange, eax // Save our value and BAM!

85

86 popad

87 }

88

89 if (VDEBUG)

90 DbgPrint("MMIO Base Address: %x", MMIORange);

91

92 return MMIORange;

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171

172
173

__asm {

cli
pushad

// Save the current CR3, seems like overkill, but it makes sense
mov ebx, cr3 // A copy to use to construct our virtual address
mov ecx, cr3 // Save a copy so we don't fuckzOr things up too much

mov edx, MMIORange // Our new CR3 val

// Setup our virtual address

and ebx, Ox003FFFFF // Gets us our offset into stuff

or ebx, 0x0DC00000 // Reference the PDE offset of (0x37 << 22)
// EBX should now have our virtual address :)

// Tests to see if the PDE is free for use
test_pde:

add ebx, 0x4 // Offset to unused PDE

// Keep the offset var up to date (but uint32 aligned, not uint8)
mov eax, PDEoffset

add eax, O0x1

mov PDEoffset, eax

//*************** BEGIN CRITICAL SECTION *hhkhkdkhhkdkhkhkdhhdhhddhhdhddhhkdhhdhhdhhdhhddhddhkhdhihih

mov cr3, edx // Inject our new CR3

mov eax, [ebx] // Add our mirthful PDE entry which should map in the PD
invlpg [ebx] // Invalidates the virtual address we used just incase it could cause later problems

mov cr3, ecx // Restore everything nicely
//*************** END CRITICAL SECTION dhkhkhkdkhkhkhkdkhkhdhhkhdhhhdhhhdhhhhkhhkhkhhkhkdhhkdhhkdhhdhhdhhhhhkhihi

cmp eax, 0 // Can we use this entry?
je inject_pde // Try the next one
jmp test_pde // Found an empty one, wOOt!

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

// Injects our recursive PDE into the PDT
inject_pde:

// Setup our recursive PDE (again)

mov eax, cr3 // A copy to modify for our new recursive PDE

and eax, OxFFC00000 // Only the most significant bits stay for 4M pages
or eax, 0x93 // P | RW | PS | PCD

// EAX now holds the same PDE to put into the 'real' PDT

//*************** BEGIN CRITICAL SECTION dhkkhkkhkhkhkhkhkhkhkhkhkhhhkhkhkhkhkhkhkhhkhhhhhkhkhkhkhkhkhhhtdkhdhhhhhhik

mov cr3, edx // Inject our new CR3

mov [ebx], eax // Add our mirthful PDE entry which should map in the PD
invlpg [ebx] // Invalidates the virtual address we used just incase it could cause later problems

mov cr3, ecx // Restore everything nicely
//*************** END CRITICAL SECTION khkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhdhhkhkhkhkhkhbhbhdddkdhkhkhkhkhhhhhdhhhhhhik

// Determine the virtual address of the base of the PDT (remembering the differences in alignment)
mov eax, cr3 // A copy to modify for our new recursive PDE

and eax, Ox003FFFFF // Only the most significant bits stay for 4M pages

mov ebx, PDEoffset

shl ebx, 22 // Offset into the PDT

or eax, ebx

mov PDEoffset, eax

popad

sti

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com

