
HARES: Hardened Anti-Reverse Engineering
System

Technical Whitepaper

Jacob I. Torrey
Assured Information Security, Inc.

torreyj@ainfosec.com / @JacobTorrey

ABSTRACT
This paper provides a technical overview of the
HARES software protection research effort performed
by Assured Information Security. HARES is an
anti reverse-engineering technique that uses on-CPU
encryption [7] in conjunction with Intel x86 TLB-
splitting [12] in order to significantly increase the
effort required to obtain the clear-text assembly in-
structions that comprise the target x86 application.

Performance and use-cases of the system are pre-
sented, and a number of weaknesses and future
works are discussed. Related works are compared
and contrasted with HARES in order to highlight
its improvements over the current state-of-the-art.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: Gen-
eral—System architectures; D.2.0 [Software En-
gineering]: General—protection mechanisms

Keywords
Security, Obfuscation, Encryption, Split-TLB, AES,
TRESOR

1. INTRODUCTION
This paper provides details on the design and im-
plementation of the research effort HARES. HARES

provides a proof-of-concept capability to transpar-
ently execute fully-encrypted binaries on a stan-
dard Intel CPU with minimal performance impact.

There are a number of use-cases for such a capa-
bility: protection of algorithmic IP, providing resis-
tance to mining for ROP gadgets and significantly
increasing the difficulty of “weaponizing” a crash-
case into a RCE. Background is provided, followed
by details on the HARES design, and an evaluation
of the proof-of-concept. Finally related works and
conclusions are presented.

2. PROBLEM STATEMENT
The current state-of-the-art for program protec-
tions are vulnerable to sufficiently motivated at-
tackers and reverse-engineers. Resulting from these
weaknesses, sensitive algorithms can be copied, and
vulnerabilities in software exploited.

2.1 Background
This research builds upon numerous past research
efforts and technologies, the following subsections
provide the requisite background for a generally
technical reader to fully understand the methodol-
ogy of HARES.

2.1.1 Intel x86 Architecture
HARES supports the modern Intel x86 CPU archi-
tecture (Core-i 4000 series and newer), a modified-
Harvard CISC instruction set architecture commonly
found on today’s desktop and laptop computer sys-
tems. The following paragraphs present a deep-
dive into certain features of the x86 architecture
which are leveraged by HARES in order to provide
anti reverse-engineering protections.

1

Privilege Rings. Initially implemented in the In-
tel 80286, and extended more fully with the 80386,
privilege rings and“protected mode”provide a level
of protection from misbehaving applications. Prior
to protected mode, the CPU operated in“real mode”,
where every application had full access to the en-
tire memory space, and the ability to directly com-
municate with hardware. If a real mode applica-
tion were to overwrite a critical portion of memory
storing the operating system (OS), there were no
protective mechanisms in place to prevent it from
doing so.

In protected mode, the OS kernel could load it-
self into a more privileged “ring” than the applica-
tions it was supporting and limit the applications’
ability to impact the system as a whole. There
are four “official” privilege rings (0− 3) and two or
three other modes of execution that are typically
referred to as rings −1,−2, & − 3. Modern OSs
typically utilize only two of these rings: ring-0 for
the privileged “kernel-mode” OS routines, sched-
uler and interrupt handlers and ring-3 for the“user-
mode” applications where they are limited in their
abilities to execute certain instructions, access pro-
tected memory regions, interact with the hardware,
generally to impact the system as a whole [5].

As the x86 architecture has evolved and the scrutiny
placed on the low-level implementations increased
in the security community, two more CPU modes
have been informally called rings: hypervisor (VMM)
root mode (ring −1) and system management mode
(ring −2). Ring −3 is also used when referring
to Intel’s Active Management Technology (AMT),
but is not relevant for this research. Ring −1 is
more privileged than the OS kernel, and is used
by hypervisors to virtualize multiple OSes with-
out requiring modification to the OS kernel (full-
virtualization). The specifics of ring −1 are dis-
cussed later as HARES is implemented as a thin-
hypervisor.

Ring −2, more commonly known as system man-
agement mode (SMM), is a parallel and hardware-
enforced stealth mode of execution. It was orig-
inally developed for BIOS and chip-set manufac-
turers to run platform-specific routines for power
and thermal management without exposing the in-
ternals to the OS. When the CPU is executing in
SMM, it has a full view of memory, while when ex-
ecuting in protected mode, the chip-set blocks ac-
cess to SMM memory regions (SMRAM). In order

Figure 1: Paging Translation on x861

to switch from protected (or real mode) into SMM,
a system management interrupt (SMI) is issued to
the CPU and the hardware saves all CPU context,
allowing the SMM code to execute without the OS
or hypervisor detecting it was interrupted. The
conditions for the hardware to generate an SMI
are defined via a number of chip-set registers that
can be locked during SMM initialization [5].

Paging & Memory Management. Modern CPUs
provide the ability to provide each process with a
unique view of memory [5]. This feature, known as
virtual memory, eases the OS’s task of isolating dif-
ferent applications and providing each application
with a different view of memory. When a virtual
memory address is accessed by an application, the
CPU uses a number of data structures to automat-
ically translate the virtual address into a physical
address. This process, outlined in Figure 1, uses
the CPU’s CR3 register to find a page directory
and optionally a page table that holds the phys-
ical address. In most modern OSes, each process
is given its own set of page translation structures
to map the 4GiB flat memory view provided to the
system’s physical memory (assuming a 32-bit OS).

Intel VT-x, VT-d & EPT/VPID. A growing trend
in information technology is the use of virtual ma-
chines, or VMs to enable data-center consolidation.
A hypervisor, or virtual machine monitor (VMM),
allows multiple OSes to run simultaneously on the
same physical system, each isolated from the others
and provided with the appearance of a normal sys-
tem environment. While some hypervisors require

1Image from http://viralpatel.net/taj/
tutorial/image/paging.gif

2

http://viralpatel.net/taj/tutorial/image/paging.gif
http://viralpatel.net/taj/tutorial/image/paging.gif

changes to the guest OS (para- virtualization) to
function properly, many leverage newer CPU ex-
tensions to allow an unmodified OS to run with
only minor interactions from the hypervisor. These
extensions, known as virtual machine extensions,
or VT-x on Intel, improve performance by empow-
ering the CPU and chip-set to perform more of the
isolation and VM memory management in hard-
ware as opposed to software. VT-x allows the hy-
pervisor to set a number of different exit conditions
for each guest VM that, when met will trigger a
VM Exit, returning control to the hypervisor for
processing.

After the initial release of VT-x, it was discovered
in [15] that it was possible to use a device’s direct
memory access (DMA) capabilities to bypass VT-
x’s protections and compromise the hypervisor. In
response to this weakness, Intel released the exten-
sions for directed IO (VT-d), providing a memory
management unit (MMU) for IO DMA memory ac-
cesses, preventing a device from directly accessing
main memory outside of its policy-proscribed re-
gion(s).

In the latest version of hardware virtualization ex-
tensions, Intel and AMD have released the extended
page table (EPT) or rapid virtualization indexing
(RVI) technologies, respectively. These allow the
hypervisor to take even less of a role in the memory
management and isolation of each guest by provid-
ing another layer of paging structures to translate
the physical addresses that the VM OS believes to
be the physical address (guest physical address) to
the machine physical address. The CPU can au-
tomatically translate these in a similar fashion to
conventional paging and provide a VM Exit, anal-
ogous to a page fault, for the hypervisor. These
translations are stored in the TLB, and tagged with
each guest’s VM process ID (VPID) so they need
not be flushed on VM context switch.

These aforementioned technologies significantly aid
the hypervisor in running multiple VMs in an iso-
lated fashion with relatively minor performance im-
pacts. The implementation in Section 3 extensively
leverages these technologies to perform the TLB-
splitting for user-land Windows applications.

Translation Lookaside Buffer (TLB). The trans-
lation lookaside buffer, or TLB, acts a cache for

Figure 2: Core 2 and Previous CPU Archi-
tecture (TLBs Highlighted)3

these paging translations. Due to relatively high
memory latency compared to cache-access speed,
a page translation look up is expensive in terms
of time; therefore, these operations are optimized
by caching the virtual-to-physical mappings in the
TLB. While logically, the TLB stores the transla-
tions for all accessed addresses in the same region of
silicon, the physical implementation splits the TLB
(Figure 2) into two: one for instruction addresses
(I-TLB) and one for data addresses (D-TLB). This
implementation detail is important, as it allows the
TLB to point to different addresses for instruction
fetches as compared to data accesses.

In earlier processors4, the TLB was a single-layer
(L1) cache that, in the silicon was split into two: a
data TLB (D-TLB) and instruction TLB (I-TLB),
for data and instruction fetches respectively. With
the release of the Nehalem architecture5, a second
layer (L2) cache was introduced, the shared TLB
(S-TLB) that provides a larger cache for both the
I-TLB and D-TLB in the event of an eviction from
the L1, further reducing TLB “misses” and the re-
sultant performance hit.

The TLB operates in a similar fashion to the reg-
ular CPU caches (L1, L2 & L3) in that it typically
does “the right thing”, requiring minimal manual
management. The Intel architecture does provide a
small number of instructions for flushing the TLB,
either a single entry or multiple entries. The TLB
is flushed (excepting for pages marked “global” in
the paging structures) when the value of the CR3

CPU register is changed (typically when switching

3Image from Intel Software Developer Manual
3A [5]
4Up to and including Core-2
5The first Core-i series processor micro-
architecture

3

processes). With the addition of EPT and VPID,
other instructions that operating in a similar fash-
ion were introduced to managed a VM-aware TLB.

2.1.2 TLB-Splitting
There has been some past work that took advan-
tage of this split-TLB nature for both defensive and
malicious purposes in the past. In the PaX/GRSecurity
project, whose aim was to harden the Linux OS
from attack, the no-execute (NX) bit was emulated
by overloading the user-supervisor bit (U/S) and
splitting the TLB to prevent instruction fetches to
a protected page [9]. On the offensive side, the
Shadow Walker root-kit [11] built upon this work
as well as work done to prevent self-verifying ap-
plications from detecting corruption [14]. Shadow
Walker is designed to hide the presence of a mali-
cious kernel driver through TLB-splitting. When
this driver is accessed as data, such as by an anti-
virus tool, Shadow Walker points the D-TLB to-
wards the unmodified kernel region, thus hiding the
compromise. When the target section is executed,
the I-TLB is filled with the address of the malicious
driver’s code, allowing it to run as expected.

In [12], the new Nehalem (Core-i series) micro-
architecture is discussed and highlights the addi-
tion of a new shared TLB (S-TLB). With this new
second level cache for address translations, pre-
vious works no longer were able to maintain the
split-TLB. The MoRE work provided the capabil-
ity, through the use of the more granular permis-
sions afforded by EPT to once again simulate this
split TLB environment, with minimal performance
impact.

AES-NI Instruction Set. In the aftermath of [13],
Intel developed a hardware-based AES implemen-
tation in their more recent CPU offerings (Core-
i series 4000 and new) in order to increase the
challenge of side-channel attacks. The instructions
to utilize this implementation were collectively re-
ferred to as AES-NI, or the Advanced Encryption
Standard-New Instructions [5]; AES-NI provides
an improvement in security as well as a perfor-
mance enhancement from being hardware-accelerated.

2.1.3 TRESOR and On-CPU AES
In [7], the new AES-NI instructions were used in a
Linux kernel patch to provide on-CPU encryption
and decryption support where the key was pro-

Figure 3: Windows PE File Structure8

tected from cold-RAM attacks6. TRESOR used
the CPU debug registers (DR0-7) as a key stor-
age mechanism and used its position in the kernel
to prevent applications from accessing those regis-
ters7. TRESOR would have the user input the key
into the CPU debug registers during early boot to
limit the number of running applications that could
intercept the key.

2.1.4 Windows PE Format
Modern Windows OS applications and kernel drivers
are binaries in a format known as portable exe-
cutables (PE) (Figure 3). This format provides
the application or driver loader with the requi-
site information to load it into memory, adjust any
addresses which may have been changed and link
in any shared libraries before execution. It di-
vides the binary into a number of different sections,
some for code (generally labeled ‘.text’), some for
data (‘.data’) and other informational sections. Of
these extra sections, the most important to this ef-
fort is the ‘.reloc’ section, which lists the number
and location of addresses which must be updated
at load time if the compile-time address is different
from load address.

6When RAM is brought to a very low temperature,
it will persist its contents for a period of time, al-
lowing an attacker to insert the RAM into another
machine to dump the contents of memory
7Debugging applications like GDB will automat-
ically switch to using software breakpoints if the
kernel reports no free debug registers
8Image from http://i.msdn.microsoft.com/
dynimg/IC155437.gif

4

http://i.msdn.microsoft.com/dynimg/IC155437.gif
http://i.msdn.microsoft.com/dynimg/IC155437.gif

2.2 Research Question
The goal of the HARES research was to determine
if a TRESOR-like system implemented in conjunc-
tion with a TLB-splitting capability would allow
for the apparent execution of fully AES-encrypted
applications without requiring source for that bi-
nary. If possible, what would the limitations, secu-
rity weaknesses and performance impacts on such
a system.

3. PROPOSED SOLUTION
The below subsections describe HARES, described
in components that together comprise the research
prototype. The ordering of the following subsec-
tions are in line with how the research effort pro-
gressed, and should provide the reader with a pic-
ture of the “journey”.

3.1 AES-NI in VMM
In order to minimize the duplication of effort, HARES
was based upon the open-source VMM TLB-splitting
capability provided by MoRE [12]. MoRE was a
thin-VMM for Windows 7 (32-bit, no PAE) that
added the requisite functionality to simulate a split-
TLB to the ‘vmcpu’ root-kit. In order for HARES
to protect the AES-NI keys from a compromised
OS kernel and to integrate smoothly with the MoRE
code, the on-CPU AES-NI routines (using the de-
bug registers) from TRESOR were “hoisted” to the
VMM and the protections against an OS or ap-
plication from reading the registers were moved to
the VMM layer. This was done by adding debug
register accesses (read and write) to the VM Exit
conditions in the VM control structure (VMCS) for
the VM. The VMM handler for these exits would
either return a zero value for reads to all registers
or silently discard writes9.

As MoRE was initially developed for operation in
32-bit mode, only 128-bit AES keys are supported.
The authors however see no barrier to adding sup-
port for 256-bit key lengths on a 64-bit version of
HARES.

3.2 AES Encryption of PE Executables
Once the HARES VMM could perform on-CPU
routines for AES decryption, a tool was created to
take as input a PE .exe file, and output it with all

9In future work, we anticipate engineering a more
compatible solution that does not interfere with
application debugging operation

the sections marked as executable AES encrypted.
This process required parsing the PE structures
in order to locate all the code sections in the bi-
nary, leaving the meta-data structures and data
sections untouched. In Section 4.2.1, we discuss the
challenges that arose during this process, and how
this is a extremely difficult operation to perform
correctly. In brief, many compilers will compress
the output binary by interleaving code and data
into the same section, thus when run by HARES,
the application would not function properly as cer-
tain data structures were encrypted and accessed
as data. We will discuss our current work-around
for this issue in Section 4.2.1.

3.3 Windows Process Creation Moni-
toring

The HARES VMM is launched through a co-operative
Windows kernel driver, which via hyper-calls, can
interact with the VMM from ring-0. This driver
registers a new callback for process creation: con-
figuring the OS to notify the driver every time a
new application is started. If the newly-started ap-
plication is not encrypted, the driver will perform
no action, allowing the application to operate as
usual.

Once a HARES-protected application is started,
the driver will perform a number of actions in order
to allow the OS to seamlessly execute the program.
A limitation of the current prototype is the require-
ment to lock the program’s encrypted pages into
non-paged memory. This is needed as OSes will
page out unused memory pages to disk until they
are needed in order to free up RAM for other pro-
cesses. Since the goal of HARES is to act transpar-
ently to the OS and user, if the OS were to page out
an application’s page and replace it with memory
from a different process, the EPT mapping would
still reflect the HARES application and corrupt the
process (the OS’s write to that page would update
the data page, but instruction fetches would still go
to the original program’s page). In order to com-
bat this, the current HARES prototype will lock
the pages into non-paged memory. This is a con-
straint on the system’s resources as the non-paged
pool is typically in high-demand and much smaller,
so the application size for this prototype is limited.

There are engineering solutions to bypass this lim-
itation, if Microsoft were to register a new call-
back for a region of memory being paged in or out,

5

HARES could update the protected pages accord-
ingly. Alternatively, it would be feasible for the
VMM to monitor modifications to the target pro-
cess’ paging structures and infer the same informa-
tion in a more “brute-force” method.

Once the memory has been locked, it can then be
decrypted by VMM (on-CPU using AES-NI) into
a region of memory protected by the hypervisor as
execute-only.

3.3.1 Simulating the Split-TLB
On pre-Nehalem systems (Core 2 and previous),
the I-TLB and D-TLBs were not directly connected,
and thus a full split was possible. With newer sys-
tems, the interaction with the S-TLB requires the
use of EPT’s more granular permissions to pre-
vent the “pollution” of the incorrect entry being
merged across from the I-TLB to the D-TLB or
vice-versa[4].

HARES uses a similar model as Shadow Walker
for emulating a Harvard architecture on x86 [11].
This work configured the VMM to trap on EPT
faults (similar to a page-fault in the kernel) and
will then use the more granular permissions avail-
able (E/R/W) in the EPT paging structures to di-
rect differing types of memory fetches to the correct
location in physical RAM.

EPT Fault Handling. When the VMM is launched,
it creates an identity map, mapping each guest-
physical page to the same machine-physical address
with every mapping present and full permissions.
Through the use of the larger page sizes available to
EPT, this is a relatively small page table configura-
tion. Once the application is loaded into memory
by the OS, the VMM is given the list of memory ad-
dresses corresponding to the code sections to split
and the EPT paging structures are updated to map
1-to-1 for each page. These entries are then either
mapped execute-only to the decrypted code pages
or read/write to the encrypted memory.

When a memory fetch occurs and there is no match-
ing entry in the TLB, the CPU will examine the
paging structures, if the EPT mapping currently
set is not appropriate for the type of fetch, a fault
will occur. The HARES VMM will determine the
type of fault (instruction or data) and update the
EPT paging structure for that memory page to

point to the proper region of physical memory and
the permissions set to allow the fetch. The guest
is then resumed and execution continues until an-
other fault is triggered.

COW Detection and Support. Windows provides
the feature of copy-on-write to minimize memory
duplication when multiple instances of the same
application are run in parallel; the same static code
pages are all referenced from all of the duplicate
programs. If a single instance of a program makes
a modification to the code page(s), the OS will per-
form this copy-on-write operation. It was identi-
fied in [12] that this process would move the active
application pages elsewhere in memory, defeating
the TLB-split. In order to keep abreast of these
changes, the VMM is configured to trap on the
OS process switch (change of the CR3 register) and
will re-scan the application’s paging structures to
identify any modifications and update the list the
VMM uses for managing the TLB-splitting opera-
tion.

3.4 Secure Tear-Down
The OS driver is also notified by the kernel of
programs terminating via the same mechanism as
process creation monitoring. When the HARES
driver’s callback is executed, it issues a hyper-call
to the VMM to overwrite the decrypted code page
with NULL-bytes and cease the TLB-split for that
application.

4. RESULTS EVALUATION & DISCUS-
SION

The below subsections provide a brief overview of
the results of evaluating the prototype, and a dis-
cussion of its benefits and possible attack vectors
against a HARES-protected application.

4.1 Protections Afforded
The protections provided by HARES are: the pro-
tection of a program’s code (data is still vulnerable)
against static analysis and significantly raising the
bar for dynamic reverse-engineers. These protec-
tions can help prevent sensitive algorithms and IP
from being reversed as well as protect a vulnerable
application against certain types of exploitation.
Due to the Harvard nature of the HARES run-time
environment, any code-injection attacks would be
diverted to the encrypted data pages, rendering

6

them useless. Mining the encrypted application for
ROP gadgets, or “weaponizing” a crash-case into a
RCE would also be significantly more challenging.

4.2 Performance & Compatibility
The following paragraphs, the performance of the
prototype will be detailed. These results provide
a rough estimate of how a HARES system would
function, performance will certainly change for dif-
fering applications and if any engineering enhance-
ments performed.

Tested Applications. The HARES team utilized
the synthetic test-suite used in [12] in order to
determine the performance impact of running a
HARES-protect application. In order to determine
the feasibility of more generalized use, HARES was
used to encrypt the following three Windows 7 util-
ities (highlighting that HARES does not require
source): Notepad, Calculator and Paint. These
small applications could run with the memory con-
straints imposed by the proof-of-concept and were
used to gather ground-truth into how HARES would
impact the usability of a typical GUI program.

Performance Impact. Naturally, since HARES cre-
ates a duplicate page for each executable page of
the target program, there is increased memory us-
age, at the worst-case (every section is marked as
executable), the memory footprint is slightly less
than doubled. The performance impact is primar-
ily noticeable increased start-up time. Overall (in-
cluding start-up time), the performance impact was
comparable to the results from [12], or about 2%.
In terms of responsiveness for a GUI application,
the presence of HARES is unnoticeable to the end-
user.

4.2.1 Application Support Challenges
One of the most difficult challenges with the re-
search effort was to encrypt binaries without access
to the source code or the ability to recompile the
program with control over the linking and output
layout. In many cases, the compiler will“compress”
a code and data section by combining them into
a single, dual-use section. During execution, when
the program is run under HARES, the data fetches
accessing strings, or other data values in the code
section were encrypted, even to the program’s code
itself. This resulted in program instability or the

encrypted data being used incorrectly.

A work-around for cases where recompilation is not
possible is to put HARES in “learning” mode and
run the program unencrypted. After exercising the
program (manually in this effort, in the future with
symbolic/concolic execution), HARES would out-
put memory regions used as data in an executable
section. This output could be passed to the PE
encryption tool to pass over these regions in the
binary, leaving the areas of the program accessed
as data in the clear to enable smooth execution.

4.3 Security Weaknesses
As there are no silver-bullets in security, the fol-
lowing subsections outline certain classes of attack
as well as considerations for key management and
deployment strategies.

4.3.1 Attack Scenarios
The below paragraphs describe the different sce-
narios in which it is imagined a HARES-protected
application would be subjected to attack. As is
always the case in security, there are sure to be
additional scenarios not conceived nor described in
this paper.

Theft of Protected Application. The simplest at-
tack scenario would be an attacker copying an ap-
plication from an authorized computer to another
system to commit software piracy or examine the
application for vulnerabilities. In this scenario, the
PE file is encrypted, as well as a memory dump of
the PE image, thus the attacker will be unable to
decrypt the application on a non-authorized sys-
tem save by brute-force attacks on the AES key.

Compromise of Authorized Host. This scenario
is when an attacker successfully gains remote access
to an authorized system and can launch software-
based attacks against the HARES system. This
attacker is assumed to have OS (ring-0) privileges,
though is unable to penetrate the VT-x barrier save
by an attack against the boot process, to take effect
on the next reboot.

“Authorized” Local Usage. The final scenario
in scope of this white-paper is when an attacker has
complete, physical access to an authorized device,

7

and is able to perform physical attacks against the
hardware. This is the most difficult attack to de-
fend against; in the following subsection, physical
attacks are discussed specifically.

4.3.2 Physical Attacks
If an attacker were to gain physical access to a com-
puter system currently executing (i.e., authorized)
a HARES-protected application, there are a num-
ber of possible attack vectors available to the at-
tacker in order to reduce the protections afforded
by HARES. This class of attack is subdivided into
the following three sub-classes viz.: hardware de-
bugging, memory dumping and side-channels. Each
is described below in more detail.

JTAG/XDM. The barrier to entry for hardware
debugging on x86 has dropped significantly in re-
cent years, with costs dropping from five-figures to
less than $1000. JTAG is simply a wire-protocol,
thus not every “JTAG debugger” on the market
can debug an Intel x86 platform. The use of these
devices are physically invasive, generally sitting in-
between the CPU and the motherboard, requiring
the system to be rebooted (removing the key from
memory) under attacker control. If the HARES
system has the key stored locally, and has a pol-
icy in place to allow it to be loaded into the CPU
debug registers at early boot, it is possible an at-
tacker would be able to exfiltrate the key from the
CPU registers. However, if the system requires
an authorized user to boot the system (e.g., via
a BIOS password or FDE key), the attacker would
only succeed in performing a DoS of the target sys-
tem. It is for this reason that the authors suggest
complementary protections put in place to follow
best-practices for network endpoints.

Cold-RAM & Other RAM Dumping Techniques.
The current implementation of HARES is vulner-
able to a cold-RAM attack targeting the decrypted
instructions, the TRESOR-based on-CPU AES will
prevent the key from theft. In Section 4.4, we dis-
cuss how the application’s decrypted instructions
can be stored only in the CPU cache and prevent
this weakness. Other RAM dumping techniques,
such as bus-snooping, etc. would operate in a sim-
ilar fashion, the current prototype could be circum-
vented to obtain the decrypted program, but the
key would be protected. The on-CPU storage of

the decrypted instructions would be able to protect
against these other methods of RAM exfiltration.

Side-Channels. There are certain to be system-
wide impacts of HARES that a determined attacker
would be able to utilize to gain further information
about a protected application. While the majority
of these are outside the scope of this white-paper, a
simple “instruction inference engine” could be cre-
ated to single-step through the HARES-protected
program and probabilistically determine the last-
executed instruction from the impact it had on
the system and other information from the system
(e.g., performance counter MSRs).

4.3.3 Key Loading & Distribution
While the current HARES prototype research ef-
fort aimed to specifically focus on the protective
capabilities available on existing systems, and key
management was left to future work, the follow-
ing paragraphs outline some possible key loading
options.

Key Loading. In [7], the AES key is loaded into
the CPU’s debugging registers early in the OS’s
boot process, when the majority of applications
found on a typical system have not yet been started.
This concept of minimizing the number of applica-
tions running when the key is loaded is a sound way
to reduce risk. In order to augment the user expe-
rience, the key could be stored on a USB device
(e.g., a YubiKey10).

For more security-conscious environments, the key
could be sealed via the TPM such that it is only
unsealed if the system is in the proper state, and
the HARES VMM has been loaded as the mea-
sured launch environment. On Intel vPro systems,
this provides a seamless user experience and signif-
icant security improvements as the key will never
be released if there is a malicious hypervisor root-
kit attempting to circumvent the HARES system.
Once the HARES VMM has been loaded, and the
key inserted into the CPU registers, they can be
wiped from memory and the TPM PCRs extended
with random data in order to prevent another ap-
plication from unsealing the key(s).

10https://www.yubico.com/products/
yubikey-hardware/yubikey-2/

8

https://www.yubico.com/products/yubikey-hardware/yubikey-2/
https://www.yubico.com/products/yubikey-hardware/yubikey-2/

On systems without Intel TXT/vPro, systems such
as [6] can be utilized to perform similar verifica-
tion of a platform’s state prior to loading a key
from a protected storage mechanism. The use of
these techniques would prevent the HARES key
from being released unless the dynamic verification
succeeds, implying there is no malicious VMM or
attacker attempting to reverse engineer or debug
the key loading process.

Protecting the Key. Once the key has been loaded
into the CPU registers, it must be erased from
cache and main memory, it is important to en-
sure the key is not resident in memory if a ma-
licious process is able to prevent the CPU cache
from being written back to RAM (such as with the
INVD instruction). The HARES VMM configures
the system to trap on accesses of the debug regis-
ters and will ensure NULL is returned for all reads
and writes are silently discarded. The advantage of
doing this in the VMM versus the OS driver is that
a malicious OS, or kernel-mode driver will still be
unable to read the key from the CPU registers.

With the VMM protecting the key in the CPU reg-
isters, it is still vulnerable to attacks from a ma-
licious system management mode (SMM) handler.
Protecting against SMM-based threats was outside
of the scope of this initial effort, but may be ad-
dressed in future works.

4.3.4 Emulation & Virtualization Attacks
If the HARES VMM can be induced to run in
a nested virtualization environment, or under full
emulation, the CPU debug registers can be read
and the protections bypassed. For this reason, it
is critical to use a secure loading mechanism such
as Intel TXT or a software-based equivalent, such
as [6] in order to prevent HARES from being used
if there is already a more privileged hypervisor or
debugging environment running on the system.

Emulation & VMM Detection Techniques. In-
tel TXT and the software-based Conqueror [6] are
able to either replace or detect the presence of a
hypervisor. In [10], it is shown that certain instruc-
tions sometimes reveal the presence of a VMM, as
well as the clock-skew introduced by the increased
overhead required to context-switch on a VM Exit.
If a trusted clock is available, then detecting the

presence of emulation or a malicious VMM is pos-
sible, and key not loaded, thus protecting it from
attack.

4.4 Future Enhancements
The HARES prototype was developed as a proof-
of-concept, designed to test the feasibility of such
an approach and provide initial estimates of the
performance impacts on the protected program and
system as a whole. The HARES research team is
exploring some additional research and engineer-
ing capabilities using the HARES prototype as a
foundation.

Engineering Improvements. The current proto-
type requires substantial improvements in order
to render it usage in a typical enterprise environ-
ment. A number of limitations would need to be
removed, namely with the memory-management of
a protected application. Currently the program is
locked into the non-paged memory pool, of which
there is a limited supply. Additionally, due to cer-
tain hard-coded values, the proof-of-concept will
not function on systems with greater than 2 GiB
of memory, as the Windows kernel memory layout
changes; a more flexible system will have to be im-
plemented in order to operate as a fielded product.

SMM Protections. System management mode at-
tacks are not new in the public art, though until
recently were dismissed by many as too targeted in
order to pose a real threat. In [8] and [16], these
assumptions were challenged, showing the intro-
spective capabilities of SMM as well as the scale
of possible vulnerabilities.

Future work in this area is needed; there is a sig-
nificant need for a defensive mechanism in order to
protect the VMM, OS and user applications from
a rogue SMM handler. Intel’s solution of a dual-
monitor mode [5], may be the ultimate goal, but
it has yet to materialize with high market pen-
etration. In the meantime, performing research
into the detection of a malicious SMM would prove
valuable simply as a method-of-last-resort, chang-
ing systems if a compromise is detected. There
is some existing work in this field [3], but future
work should build upon this to ensure the systems
HARES is operating on are trusted.

9

Memory Protections. One weakness in the HARES
prototype is its vulnerability to cold-RAM attacks
and other memory-dumping techniques. In [2], a
platform feature found on certain ARM system-on-
chips is used to prevent sensitive data from leaving
the SoC. Modern CPU caches have grown large
enough to hold small programs, and integration
and experimentation with such “no-fill” execution
techniques are of particular interest as future work
for HARES.

5. RELATED WORK
The following paragraphs aim to credit the pre-
vious works the HARES research builds on and
to differentiate between these efforts and the work
presented above. Keeping abreast of the research
performed both in the academic and“hacker”spheres
is an extremely challenging undertaking, as such
this section should by no means be considered a
complete survey of the field.

Packers. In essence, a packer is a generalized term
for any run-time modification to a program, typi-
cally with the goal of avoiding signature-based checks
of files prior to their execution. This term can en-
capsulate many sub-classes of program obfuscation
techniques, such as VM-based malware, encryption
tools, and compression. A packer works by creat-
ing a small program stub, executed at the start
of a packed program’s execution that “unpacks”
the program from its on-disk format to that which
is understandable by the host CPU environment.
The program is unpacked into a memory region
that is set to be executable, and execution is passed
to this region after unpacking is complete.

A vulnerability of packers is their weakness to run-
time reverse-engineering. While on disk the pro-
gram’s logic may be obfuscated or encrypted, once
the unpacking routine is completed, the program
will reside in memory, and be executed as a typi-
cal program, vulnerable to reverse-engineering and
other semantic analysis.

BurnEye. An example of an encryption-protected
packer, BurnEye was a protective method for GNU
ELF files that allowed them to be encrypted and
protected from static reverse-engineering, and seam-
lessly be decrypted and executed. Unfortunately,
BurnEye is vulnerable to the same classes of at-

tack as the more general packers: run-time and
dynamic attacks allow the recovery of program in-
structions, rendering the protections insufficient for
today’s threat environment.

TrulyProtect. In [1], a CPU-bound VM interpreter
is created that performs decryption on a random-
ized or encrypted intermediate representation (IR)
while protected by a VMM. This work aims to ac-
complish similar goals, but requires a VM IR to
x86 mapping, thus will not work on existing ap-
plications without access to the source. Addition-
ally, there may be a risk of statistically reverse-
engineering the encrypted mapping in a similar fash-
ion to the risks associated with electronic code-
book (ECB) mode with AES.

Sentry. In [2], researchers were able to attain a
similar level of protections for binaries on ARM by
leveraging platform-specific functionality, namely
the AES On SoC bit to prevent protected memory
regions from being written to any storage off the
system-on-chip. The authors of HARES find the
Sentry work incredibly valuable as mobile devices
store an ever-increasing amount of sensitive infor-
mation. An exciting area for future study would
be an abstraction layer for encrypted software that
can make use of the platform’s capabilities: In-
tel SGX, ARM SoC locks and HARES for systems
without such features.

6. CONCLUSION
In conclusion, HARES provides a significant im-
provement over the current state-of-the-art in pro-
tecting applications from reverse-engineering, though
a determined adversary will certainly be able to
defeat the protections. HARES provides a “drop-
in” enhancement to the security posture for many
applications known to be vulnerable, both against
theft of algorithmic IP and denying a number of at-
tack vectors. The upcoming Intel SGX capability
will likely eclipse HARES for typical use, though
the research presented herein is of interest nonethe-
less.

7. ACKNOWLEDGMENTS
The author would like to express his gratitude to
the many parties who have helped on the HARES
effort in one form or another, too many to men-
tion all by name. Firstly, Mark Bridgman for his

10

help on the prototype development and debugging
effort. Second, Loc Nguyen and Ryan Stortz for
their input on weaknesses and areas of improve-
ment. Finally, AIS for its support of this research
and its publication.

8. REFERENCES
[1] A. Averbuch, M. Kiperberg, and

N. Zaidenberg. Truly-protect: An efficient
vm-based software protection. Systems
Journal, IEEE, 7(3):455–466, Sept 2013.

[2] P. Colp, J. Zhang, J. Gleeson, S. Suneja,
E. de Lara, H. Raj, S. Saroiu, and
A. Wolman. Protecting data on smartphones
and tablets from memory attacks. In
Proceedings of the Twentieth International
Conference on Architectural Support for
Programming Languages and Operating
Systems, ASPLOS ’15, pages 177–189, New
York, NY, USA, 2015. ACM.

[3] B. Delgado and K. Karavanic. Performance
implications of system management mode. In
Workload Characterization (IISWC), 2013
IEEE International Symposium on, pages
163–173, Sept 2013.

[4] J. Gionta, W. Enck, and P. Ning. Hidem:
Protecting the contents of userspace memory
in the face of disclosure vulnerabilities. In
Proceedings of the 5th ACM Conference on
Data and Application Security and Privacy,
CODASPY ’15, pages 325–336, New York,
NY, USA, 2015. ACM.

[5] Intel Corporation. IntelR© 64 and IA-32
Architectures Software Developer’s Manual.
Number 253669-033US. December 2009.

[6] L. Martignoni, R. Paleari, and D. Bruschi.
Conqueror: Tamper-proof code execution on
legacy systems. In C. Kreibich and
M. Jahnke, editors, Detection of Intrusions
and Malware, and Vulnerability Assessment,
volume 6201 of Lecture Notes in Computer
Science, pages 21–40. Springer Berlin
Heidelberg, 2010.

[7] T. Müller, F. C. Freiling, and A. Dewald.
Tresor runs encryption securely outside ram.
In Proceedings of the 20th USENIX
Conference on Security, SEC’11, pages
17–17, Berkeley, CA, USA, 2011. USENIX
Association.

[8] L. Nguyen. Micronesia: Sub-kernel kit for
host introspection in determining insider
threat. ShmooCon, 2015.

[9] PaX Project. Pageexec, Mar 2003. https:
//pax.grsecurity.net/docs/pageexec.txt.

[10] J. Rutkowska. Red pill... or how to detect
vmm using (almost) one cpu instruction,
2004.

[11] S. Sparks and J. Butler. Raising the bar for
windows rootkit detection. Phrack, 17(61),
November 2005.

[12] J. Torrey. More: Measurement of running
executables. In Proceedings of the 9th Annual
Cyber and Information Security Research
Conference, CISR ’14, pages 117–120, New
York, NY, USA, 2014. ACM.

[13] E. Tromer, D. A. Osvik, and A. Shamir.
Efficient cache attacks on aes, and
countermeasures, 2009.

[14] P. Van Oorschot, A. Somayaji, and
G. Wurster. Hardware-assisted circumvention
of self-hashing software tamper resistance.
IEEE Transactions on Dependable and
Secure Computing, pages 82–92, April 2005.

[15] R. Wojtczuk. Subverting the xen hypervisor.
In Black Hat USA, Aug 2008.

[16] R. Wojtczuk and C. Kallenberg. Attacks on
uefi security, inspired by darth venamis’s
misery and speed racer. CanSecWest, 2015.

11

https://pax.grsecurity.net/docs/pageexec.txt
https://pax.grsecurity.net/docs/pageexec.txt

	Introduction
	Problem Statement
	Background
	Intel x86 Architecture
	TLB-Splitting
	TRESOR and On-CPU AES
	Windows PE Format

	Research Question

	Proposed Solution
	AES-NI in VMM
	AES Encryption of PE Executables
	Windows Process Creation Monitoring
	Simulating the Split-TLB

	Secure Tear-Down

	Results Evaluation & Discussion
	Protections Afforded
	Performance & Compatibility
	Application Support Challenges

	Security Weaknesses
	Attack Scenarios
	Physical Attacks
	Key Loading & Distribution
	Emulation & Virtualization Attacks

	Future Enhancements

	Related Work
	Conclusion
	Acknowledgments
	References

