
Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Hardened Anti-Reverse Engineering System

@JacobTorrey

Assured Information Security (@ainfosec)

March 2015



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Outline

Introduction

Background

How HARES Works

Results

Analysis & Future Work

Conclusions



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Who am I?

• Advising Research Engineer
at Assured Information
Security (words are my own)

• Site lead for Denver, CO
office

• Leads low-level Computer
Architectures research group

• Plays in Intel privilege rings
≤ 0

• Ultra-runner, ultra-cyclist &
mountaineer



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Overview

• HARES provides the ability to execute fully-encrypted binaries

• Minimal performance impact at ˜2% on unmodified Intel
Core-i series processor

• Prevents key or instruction leakage even to compromised OS
kernel

• Can protect unmodified binary applications without source or
recompilation



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Problem Statement

• Application code can be
used to develop attacks

• Algorithms exposed to
copying or theft

• Code can be reused for
unintended purposes (ROP)



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Current State-of-the-Art

• Obfuscation and packers — Analysis tools and live debugging
can recover instructions

• VM-based obfuscation — Can still be mapped to x86 and
impacts performance

• Encrypting entire OS with trusted boot — Only prevents
against offline attacks



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

AES-NI

• In response to software-based caching attacks on AES, Intel
released instruction set to support AES

• Hardware logic is faster, and more protected

• Supports 128-bit and 256-bit AES

• Provides primitives, still requires engineering to make a safe
system on top of these



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

TRESOR

• Uses AES-NI and CPU debug registers to provide accelerated,
cold-RAM resistant AES on Linux

• Key loaded early boot

• Kernel patch to prevent applications reading debug registers



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

TLB-Splitting

• Translation lookaside buffer (TLB) is a cache for virtual —
physical address translations

• Used to improve paging performance

• Logically treated as single entity, physically multiple
components

• Switches x86 platform from apparent Von Neumann to
Harvard architecture:

• Used by PaX/GRSecurity to emulate no-execute bit
• Shadow Walker used for memory-hiding root-kit functionality



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

TLB-Splitting (cont.)

Figure 1: TLB during normal operation

Figure 2: Split TLB



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

S-TLB

With Nehalem micro-architecture, an L2 cache was introduced, the
S-TLB; breaks split-TLB assumptions

Figure 3: S-TLB



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

MoRE: Measurement of Running Executables

• DARPA Cyber Fast Track program

• Explored using TLB-splitting for measurement/integrity
verification of interleaved application

• Immutable code page (can repeatably measure in real-time)
• Mutable data page (for variable isolation)

• Used EPT granular permissions to simulate a split-TLB on
newer CPUs with S-TLB

• Thin-VMM to simulate Harvard architecture on per-process
basis



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

VMX Thin-Hypervisor

• Loaded as Windows 7 kernel driver

• Based on vmcpu root-kit example

• No emulation of devices, OS retains direct access to HW

• Minimal performance impact

• Can use VMCS exit conditions to track certain architectural
event



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

On-CPU AES

• “Hoists” TRESOR on-CPU
AES into VMM

• Adds VMCS exit condition
for debug register accesses
(return NULL or silently
discard write)

• Decrypts executable sections
of program into execute-only
memory



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Process Creation Monitoring

• Registers call-back for
process creation

• Notified before execution
and during termination

• Parses PE and identifies
regions to decrypt and
perform TLB-split on

• Uses hyper-calls to begin or
terminate VMM support



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

TLB-Splitting

• All data-fetch requests, even
from application itself,
directed via EPT/TLB to
encrypted page

• All instruction fetches are
directed to execute-only,
decrypted, memory

• Must track Windows
application memory
management events (COW)
and ensure EPT structures
correspond with OS-level
structures



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Test Cases

• Calculation of π — Purposely
inefficient power-series algorithm to
approximate π

• Random Sort — Randomized CPU
and memory access patterns to test
the performance for non-consecutive
cache-line accesses

• Coin-flip — Called many shared library
functions to ensure compatibility

• Timers — Monitors performance
impact as ratio of cycles to ‘wall’ time



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Test Results

Overall, average performance impact was ˜2%

Test Name Average Execution Time (s) Average HARES Execution Time (s) Performance Impact (%)

Pi 28.173 28.600 1.515
Randomized Sort1 0.016 0.031 95.83

Coin Flip 1.778 1.809 1.762
Timers 15.013 15.023 0.069

Table 1: Performance Results for CLI Test-Suite

1The randomized sort runs for such a short period that the initialization
routine of the Windows process creation monitor almost doubles the execution
time. If the TLB-splitting and periodic measurement is disabled, the run-time
is still almost double. For this test, it is reasonable to assume that there is a
constant increase of ˜.015s for each test case run under the VMX hypervisor,
and due to this test case’s short duration it skewed the percentage.



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Tested Applications

• Aforementioned synthetic test-suite

• Microsoft Windows Notepad

• Microsoft Windows Paint

• Microsoft Windows Calculator

Usability of HARES-protected applications was not noticeably
impacted to end-user



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Demonstration System

Specifications for the demonstration system to overcome some
prototype limitations:

• Intel Core-i series processor with AES-NI; Windows 7 32-bit
OS

• Single processor [numproc=1] (Our thin-VMM only supports
single core currently)

• 2GiB RAM [truncatememory=0x80000000] (Windows kernel
memory layout changes > 2 GiB, and too lazy to update
hard-coded values)

• No PAE/DEP [nx=AlwaysOff and pae=ForceDisable]
(Again, hard-coded memory layout code)



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Demonstration

[ALT-TAB]



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Engineering Challenges

• Mixed code & data in PE
section

• Paging out of application
memory

• COW/relocation of
application



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Overcoming Challenges: Mixed Code & Data

• Easily identifiable
• Import tables, debug tables, etc., are easily parsed and

excluded from encryption

• Not so easily identifiable
• Single purpose strings and other small data are often stored

adjacent to the code that uses them and are difficult to
identify in compiled code

• Not a problem if source is available
• Compiler options can be used to create read-only sections

• Binary only
• Reverse engineering — time consuming & unreliable
• Provisioning/Learning Mode — it works for proof of concept,

but unreliable for large programs
• Debug symbols



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Overcoming Challenges (cont.)

• Uses
MmProbeAndLockPages()

to prevent OS page-out —
limited non-paged pool

• VM Exit on CR3 change to
re-walk page-tables to detect
COW — update TLB-split
pages via hyper-call



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Security Benefits

Protects against:

• Reverse-engineering and algorithmic IP theft

• “Weaponization” of crash case into RCE

• Mining application source for ROP gadgets

• Harvard architecture resistant to code injection attacks



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Weaknesses

• JTAG/ICE/XDM

• Memory Dumping

• DMA

• SMM/AMT

• Side-channels

• Emulation/VMM



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Overcoming Weaknesses & Future Work

• VT-d/IOMMU

• Cache-as-RAM

• DRTM launch
(e.g., Intel TXT)

• Combining with
unique
compilation



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Unintended Use-Cases

• Offensive key management is a less-studied practice and more
challenging/likely to get wrong

• Easier to use for defense than offense



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

AV Heuristics

• However, notepad.exe (unencrypted) with a 1-bit change to
remove from MS white-list also hits 4/57



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Concluding Remarks

• Demonstrates viability of encrypted execution on existing,
common hardware

• Significantly increases reversing difficulty with minimal
performance impact

• Provides vulnerable legacy systems “breathing room” until
appropriate fixes can be implemented

• Intel SGX will be an exciting hardware extension to the
platform and should be explored



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Acknowledgments

• Mark Bridgman (@c0ercion)
for his work on this effort

• Mudge (@dotMudge) &
DARPA for supporting the
precursor work (MoRE)

• Loc Nguyen (@nocsi ) &
Ryan Stortz (@withzombies)
for their input from a reverse
engineering perspective



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

References

Formal references can be found in the whitepaper for:

• GRSecurity PAGEEXEC

• Shadow Walker

• Intel SDM

• TRESOR & TRESOR-Hunt

• ARIUM website

• Self-hashing applications

• CoreBoot Cache-as-RAM

and more.



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Thanks!

See you all next year at Syscan
2016!



Introduction Background How HARES Works Results Analysis & Future Work Conclusions

Questions & Discussion

• Thanks for your attention!

• Any questions? or let the heckling begin!

• Whitepaper can soon be found on my Twitter profile
(@JacobTorrey: pinned-tweet)


