
5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Towards a LangSec-Aware SDLC

Mr. Jacob I. Torrey
TROOPERS’16
@JacobTorrey

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

2

Thanks for coming!

•  Hard to “compete” with the very talented
Felix presenting exploits

•  But…

•  Exploits will be patched
•  LangSec is FOREVER!

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

3

•  Advising security researcher at Assured Information Security
–  Leads Denver, CO office
–  Leads the low-level computer architectures group
–  Plays in:

•  SMM
•  VMM
•  BIOS

•  LangSec Co-conspirator

•  Avid outdoorsman/traveler
–  SEE YOU AT THE RUN!

Who am I?

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

4

•  Problem, Introduction & Goals
•  Background

–  Halting Problem & “Undecidability Cliff”
–  Verification
–  Parsing & Parser Differentials

•  Programming Conventions
–  JPL Top 10
–  Strict Parsing
–  Maximal clarity, minimal inference (Verification-Oriented Paradigm)
–  Reduce complexity

•  Tools for Enforcing Compliance
•  Conclusions

Outline

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

5

•  Lack of objective and comprehensive metrics in
security and software development has led to ad
hoc development practices
–  Development based on “tradition” (“I’ve always done it

that way”)
–  Biases towards your “cult’s” model
–  Current issues highlight the failing of the status quo

•  More software being written now by more diverse
group, secure composition is hard
–  Pwned by a cloud-enabled light bulb!

Problems

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

6

•  Last year’s keynote by Sergey Bratus showed the
theoretical underpinnings of cyber insecurity
–  “My Favorite Things”

•  Field of Language-Theoretical Security (LangSec) aims to
use a computational complexity argument to reduce
vulnerabilities
–  Identify and kill off the “weird machines”
–  Exploits are proofs of insecurity

•  Need a recipe book to augment software development life-
cycle (SDLC) to “field” LangSec

Introduction

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

7

•  My goals for the audience after this talk:
–  Understand how LangSec has far-reaching impacts into

software security
–  Have a framework to transition theory into practice

•  For developers:
–  Recognize dangerous constructs
–  Avoid defect-prone semantics

•  For project managers:
–  Audit compliance automatically (continuous integration

for LangSec)
–  Sell the theoretical underpinnings of the changes to

SDLC to increase corporate buy-in

Talk Goals

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

8

•  Bugs will happen, how your SDLC is designed
dictates where in the process they’ll be found

•  By finding bugs sooner in the development process,
defect rate in production goes down
–  Improving security
–  Reducing QA costs
–  Less “putting out fires” when production bugs are reported

LangSec SDLC Goals

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

9

•  See how happy they are?

Design & Architecture

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

10

•  See how happy he is?

Development and Compile-time

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

11

•  Feeling lucky?

Dynamic testing and QA

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

12

•  Yikes!

Production bug reporting

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

13

•  Hope you have a good lawyer!

3rd-party notification and oversight

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

14

•  Halting Problem
– Determine if a program will halt on a given input
– Pretty simple-sounding property to verify, right?

Background: Halting Problem

-  In general, on Turing-
complete programs,
this is provably
undecidable

-  Undecidable: may run
forever without
returning

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

15

•  Complexity does not grow uniformly
– As complexity increases, so too does verification

difficulty
– Once Turing-completeness is hit, you’ve fallen

off the verification cliff

Background: Undecidability Cliff

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

16

•  Developers are not infallible
–  “Trust but verify”

•  Static analysis look for bugs in source or
binary without execution
– Certain run-time semantics lost

•  Dynamic analysis looks for bugs through
instrumented execution
– Challenge of coverage

Background: Verification

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

17

•  Static analysis cannot infer all state or the
“intent” of a programming construct
– Mark Dowd’s sendmail crackaddr() bug
– A while() loop expanding email address
– Semantics too abstracted for easy verification

•  Dynamic analysis typically is underpinned by
an NP-complete problem
– As state-space grows, runtime quickly becomes

untenable

Background: Verification II

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

18

•  Halvar Flake/Thomas Dullien proposed this
as an example of a “hard problem” for
verification

•  Bug in while() loop expanding and matching
“(“s and “<“s in email addresses

•  Can be statically detected if looking for it,
hard in practice

Background: Crackaddr

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

19

•  Term that should encapsulate all boundaries in a
program or interface where input is converted from
one format to another
–  Reading in user input
–  RPC calls
–  Removing encapsulation
–  Reading data from files/network into structured, typed data

•  A data specification should be generated first, and
non-compliant input rejected!

See how happy she is the invalid data was rejected? à

Background: Parsing

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

20

•  Once complexity of input language falls off the
undecidability cliff, intractable to determine if two
parsers for same specification will ingest the same
input identically
–  Bitcoin’s OpenSSL ASN.1 BER parsing on 32 vs. 64 bit systems
–  SSL certificate parsing in Mozilla Firefox

Background: Parser Differentials

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

21

•  Motor industry safety & reliability association’s C
programming guidelines for safety-critical code
–  Used for automotive control code

•  Many tools (FOSS & commercial) to validate code
bases!

Programming Conventions: MISRA-C

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

22

•  NASA’s JPL has a “top ten” for safety-critical code
–  Goals: reduce defects, ease verification for code

running in space
–  Other than a few for readability/clarity, they map nicely to

LangSec principles
–  Next few slides will detail the conventions and their

theoretical underpinnings

Programming Conventions: JPL Top 10

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

23

•  Restrict to simple to verify control-flow where
possible (Rule #1)
–  Eliminate/minimize gotos, longjmps and recursion
–  Makes the control-flow graph easier to analyze (acyclic)
–  Forces more programmer “intent” into syntax

•  All loops must have an upper bound on iterations
(Rule #2)
–  Must be possible for analyzer to determine termination

(Walter recursion)
–  Some loops should be provably non-terminating (e.g.,

scheduling loop)

JPL Top 10

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

24

•  Memory allocations should all be performed before
business logic execution (Rule #3)
–  Makes the memory map easier to analyze
–  Verification is easier when memory allocations are

guaranteed
–  Optionally, valgrind and LD_PRELOAD a malloc()

wrapper that randomly fails

•  Check all parameters in each function (Rule #7)
–  Ensure a parser bug did not propagate malicious input
–  Add fuzz testing to your unit testing QA step

JPL Top 10 II

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

25

•  Limit use of pointers (especially recursive pointers)
and disallow function pointers (Rule #9)
–  Function pointers shift problems from compile-time to

run-time – this makes static analysis much less powerful
–  Recursive pointers leads to unbounded computations

(e.g., PDF specification)

JPL Top 10 III

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

26

•  Input data must be subjected to as much scrutiny
as code is by a compiler!
–  When parsing is done in ad hoc fashion, the developer’s

assumptions may lead to vulnerabilities!
–  Invalid input must be rejected!
–  NEVER rewrite invalid input to “fix” it

•  You are now allowing input to operate the weird machine you’ve
created

•  Using a specified interface will ease interactions
between teams and components
–  Jeff Bezos mandated that all Amazon software will act as

a “service”, lead to its dominance over the cloud market

Strict Parsing

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

27

•  A meta development paradigm: aim to provide the
maximum semantic information about intent to
compiler and verification tools
–  If looping, aim for induction variables to be clearly

identifiable (for/foreach instead of while)
•  Can improve performance due to better loop unrolling

–  Types should not be overloaded
•  E.g., MISRA-C requires char only be used for a single character,

not for small integer values (which should be int8_t)

–  Minimize data scope
•  If an object cannot be referenced, cannot be corrupted

Verification-Oriented Paradigm

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

28

•  Benefits of VOP:
–  Code is more self-documenting, easier to read & review
–  Verification is easier
–  More bugs can be discovered at compile/unit testing time

rather than patching run-time code

Verification-Oriented Paradigm II

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

29

Verification-Oriented Paradigm III

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

30

•  Example of pushing bug detection to compile-time:
–  if (variable == CONSTANT) { …
–  versus
–  if (CONSTANT == variable) { …

•  Semantically equivalent when implemented
correctly

•  If the second = is omitted:
–  First will compile, yielding unexpected results
–  Second will fail to compile

Verification-Oriented Paradigm IV

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

31

•  As security practitioners, we aim to implement the
“least privilege principle”

•  “Don’t run your IRC client or browser as root”

•  Computational power is a form of privilege, and
we’re running everything with “root”
– AV relies on having more privilege than malware
– Doesn’t work without defender’s advantage

Reducing Complexity

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

32

Reducing Complexity II

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

33

•  More complex programs lead to more bugs
–  More chances of programmer error
–  Less chances of detection in testing, QA and analysis

•  JPL Rule #2 to limit looping will restrict state-space
growth, improving verification

•  In IEEE LangSec workshop, Crema showed the
verification benefits from bounded execution
–  Very few computations need unbounded looping
–  Ex: seL4 manually segregated bounded and unbounded

to formally prove OS correctness

Reducing Complexity III

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

34

•  Development guidelines and coding conventions
are excellent so long as they are followed
–  Need to have audit capabilities
–  “Trust but verify”

•  A good SDLC formalizes development process to
allow checks of compliance
–  Code reviews
–  Unit & functional testing
–  QA
–  Commit hooks & continuous integration tools

Tools for Enforcement

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

35

•  Scale for effort and results:
–  Protocol design with computational complexity in mind
–  Programming conventions for maximum bounding
–  Static analysis
–  Runtime testing:

•  Dynamic analysis
•  Fuzzing
•  Unit tests

–  Production bug reporting / bug bounties
–  Getting on front page of newspaper for breach

Tools for Enforcement

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

36

•  Aim to put as much semantic mindset in your code
as possible
–  For-each macro to create common looping structure

•  Not only valuable for verification, also for readability

•  Tools like cpp-check can help warn developers of
common traps

Developing with Semantics

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

37

•  Research project to create an open-source
compiler for a provably-halting programming
language and runtime

•  Based on LLVM, can be embedded in C for parsers

•  Familiar syntax

•  Demonstrated security benefits

Crema

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

38

•  Many mainstream parser generator frameworks are
designed with code in mind:
– Lex/Yacc
– ANTLR

•  Can be used, but Hammer and Nom are designed
with data parsing in mind
– Simple parser constructor libraries in C and Rust,

respectively

Strict Parsing

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

39

•  Design your data format specifications early, get
buy-in from parties
– Similar to interface planning

•  When planning specifications, consider the
complexity required to parse
–  IPv6 fragmentation and extended attributes is

example
– Specification adds new features, but hard to

inspect while maintaining QoS

Strict Parsing II

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

40

•  Nail is an effort by Julian Bangert et al to
automatically generate parsers from grammar
description
–  Can reverse and output structured data to input format
–  Automatically can handle length and offset fields

•  Reduces the risk of implementation or security
concerns when parsing a structure into memory
from untrusted input (and all inputs should be
considered untrusted)

•  Rejects invalid inputs

Nail

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

41

•  Create data format description, parsing function
and structure will be automatically generated
– Ambiguous parsing (e.g., whitespace) will

prevent reversing parsing steps
– Example: personnel database

•  Employee ID: uint32
•  Name: cstring
•  Manager bool: uint1
•  Remote employee: uint1

Nail II

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

42

Nail III

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

43

Nail IV

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

44

•  Part of Apple’s Xcode IDE, but can be used on
other platforms in standalone mode

•  scan-build replaces the CC environment variables
and performs static checks for common
programming errors

•  scan-view provides web UI to explore found bugs

LLVM/Clang Static Analyzer

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

45

•  In checking for NULL from malloc, I “forgot”
to break out and handle the error

•  Ran scan-build while building and then scan-
view to see the bug report:

LLVM/Clang Static Analyzer

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

46

LLVM/Clang Static Analyzer

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

47

•  Another tool based on LLVM intermediate
representation

•  Performs dynamic analysis through symbolic
computation to gain high-coverage of code

•  Can find crash cases, or be used to verify semantic
equivalence between different code bases
–  Can be used to check for parser differentials

LLVM/KLEE Dynamic Analyzer

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

48

•  Whenever a branch is reached, both paths are
executed, maintain the constraints on the input to
reach that state

•  SMT/SAT solver used to create concrete value

LLVM/KLEE Dynamic Analyzer

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

49

•  Fuzzer that compiles in instrumentation to improve
coverage
–  Provides afl-gcc
–  Provides tools to minimize crashing input case
–  Can run distributed

•  Provided input corpus will mutate

•  Random, thus can get “trapped” in loops, hard to
“steer”

AFL-Fuzz

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

50

But wait! There’s more!

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

51

Enforcement Tool: Sledge Hammer

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

52

•  Open source suite of tools that a sadistic program
manager can run on code base to audit compliance
and safety
–  Could be added to CI

•  Combination of:
–  LD_PRELOAD to simulate memory management failures
–  Header file with to poison “bad” ad hoc parsers and

semantically vague looping constructs
–  Automatic symbolic testing for parameter verification on

every function

Enforcement Tool: Sledge Hammer

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

53

•  Environment variable to temporary alter library load
order

•  Allows easy override of library functions on existing
binaries
–  $ LD_PRELOAD=./libsledge.so program

•  malloc(), calloc(), realloc(), etc. can fail and return
NULL pointer, must be checked before dereference
–  libsledge.so replaces these functions with ones that fail

with designated probability

LD_PRELOAD

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

54

•  Demo

LD_PRELOAD II

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

55

•  Header file to be included (or with -include) that
“poisons” banned keywords
–  Unsafe string operations
–  While loops
–  Non-strictly parsed input (e.g., cin/scanf)

•  Will forbid compilation if keywords are found

•  Rapid way to audit and quickly ensure compliance (or valid
reason for usage)

Poison Pill

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

KLEE-Unit

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

57

•  In order to provide assurances that input is
sanitized and function arguments vetted

•  Framework to couple KLEE (symbolic execution)
with unit test methodology

•  Will identify all functions, their arguments and
create test harness for each to be SE’d

•  Crashes can be analyzed to determine cause and
fix

KLEE-Unit

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

58

•  Demo

Function Fuzzing II

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

59

•  https://github.com/ranok/sledgehammer

Sledgehammer Details

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

60

Concluding Remarks

•  At scale, and as perimeter grows weaker, network
security must shift to more hardened applications
–  Alex Stamos: AppSec is “eating” security
–  Jacob Torrey: LangSec is “eating” AppSec

•  Google’s Beyond Corp shows that perimeter leads
to false sense of security, and that well-built
applications can stand on their own

•  “To err is human; to be caught at compile-time;
divine”

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

61

Concluding Remarks II

•  Whatever languages and tooling your organization
uses, aiming to maximize the semantic quality and
verifiability will yield positive results

•  Not just for security, but:
–  Less expensive through reductions in run-time bugs (less

QA)
–  Faster through more semantics for compilers to use

during optimization

•  Currently state of software quality highlights need to
adjust strategy

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Questions

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

References

•  Alex Stamos talk:
–  https://www.youtube.com/watch?v=-1kZMn1RueI

•  AFL-fuzz:
–  http://lcamtuf.coredump.cx/afl/

•  Nail:
–  https://people.csail.mit.edu/nickolai/papers/bangert-nail-

langsec.pdf
•  Nom:

–  https://github.com/Geal/nom
•  Hammer:

–  https://github.com/UpstandingHackers/hammer

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

References II

•  LangSec:
–  http://langsec.org/

•  JPL Top 10:
–  http://spinroot.com/gerard/pdf/P10.pdf

•  MISRA-C:
–  http://caxapa.ru/thumbs/468328/misra-c-2004.pdf

•  Crema:
–  http://spw15.langsec.org/papers.html#ver

•  Crackaddr():
–  https://bytebucket.org/mihaila/bindead/wiki/resources/

crackaddr-talk.pdf

