Towards a LangSec-Aware SDLC

......

Mr. Jacob |. Torrey g
TROOPERS'16
@dJacobTorrey

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Thanks for coming! aIS

devastating capability, revolutionary advantage

» Hard to “compete” with the very talented
Felix presenting exploits | |

 But...

« Exploits will be patched
» LangSec is FOREVER!

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

devastating capability, revolutionary advantage

« Advising security researcher at Assured Information Security

— Leads Denver, CO office
— Leads the low-level computer architectures group

— Plays in:
- SMM
« VMM
- BIOS

 LangSec Co-conspirator

* Avid outdoorsman/traveler
— SEE YOU AT THE RUN!

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

devastating capability, revolutionary advantage

 Problem, Introduction & Goals

« Background
— Halting Problem & “Undecidability Cliff”

— Verification
— Parsing & Parser Differentials

* Programming Conventions
— JPL Top 10
— Strict Parsing
— Maximal clarity, minimal inference (Verification-Oriented Paradigm)
— Reduce complexity

« Tools for Enforcing Compliance
» Conclusions

4

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Problems aIS

devastating capability, revolutionary advantage

« Lack of objective and comprehensive metrics in
security and software development has led to ad
hoc development practices

— Development based on “tradition” (“I've always done it
that way”)

— Biases towards your “cult's” model
— Current issues highlight the failing of the status quo

* More software being written now by more diverse
group, secure composition is hard

— Pwned by a cloud-enabled light bulb!

5

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Introduction aIS

devastating capability, revolutionary advantage

« Last year’'s keynote by Sergey Bratus showed the
theoretical underpinnings of cyber insecurity

— “My Favorite Things”

* Field of Language-Theoretical Security (LangSec) aims to
use a computational complexity argument to reduce
vulnerabilities

— ldentify and kill off the “weird machines”
— EXxploits are proofs of insecurity

* Need a recipe book to augment software development life-
cycle (SDLC) to “field” LangSec

6

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

devastating capability, revolutionary advantage

« My goals for the audience after this talk:

— Understand how LangSec has far-reaching impacts into
software security

— Have a framework to transition theory into practice

* For developers:
— Recognize dangerous constructs
— Avoid defect-prone semantics

* For project managers:

— Audit compliance automatically (continuous integration
for LangSec)

— Sell the theoretical underpinnings of the changes to
SDLC to increase corporate buy-in 7

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

LangSec SDLC Goals aIS

devastating capability, revolutionary advantage

* Bugs will happen, how your SDLC is designed
dictates where in the process they’ll be found

* By finding bugs sooner in the development process,
defect rate in production goes down
— Improving security
— Reducing QA costs
— Less “putting out fires” when production bugs are reported

8

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Design & Architecture aIS

devastating capability, revolutionary advantage

* See how happy they are?

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

NFUTNMM = F”’j Il ts.

STOP |‘__ LUTF“ LLLU:_]
C:__ AM

0II00HII0I0 oiu"
0l0I0DIONIIOIIONION

10

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Dynamic testing and QA 853 aIS

devastating capability, revolutionary advantage

* Feeling lucky?

g

11

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Production bug reporting 23 aIS

devastating capability, revolutionary advantage

* Yikes!

I'WILL FIND YOU, AND | WILL
REPORT YOU

snegenerator.net

12

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

13

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Background: Halting Problem aIS

devastating capability, revolutionary advantage

Halting Problem
— Determine if a program will halt on a given input
— Pretty S|mple soundlng property to verify, right?

- In general, on Turing-
complete programs,
this is provably
undecidable

- Undecidable: may run
forever without
returning

14

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Background: Undecidability Cliff aIS

devastating capability, revolutionary advantage

« Complexity does not grow uniformly

— As complexity increases, so too does verification
difficulty

— Once Turing-completeness is hit, you've fallen
off the verification cliff

MAKE GIFS AT GIFSOUP.COM

15

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Background: Verification aIS

devastating capability, revolutionary advantage

* Developers are not infallible
— “Trust but verify”

» Static analysis look for bugs in source or
binary without execution

— Certain run-time semantics lost

* Dynamic analysis looks for bugs through
iInstrumented execution

— Challenge of coverage

16

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Background: Verification Il aIS

devastating capability, revolutionary advantage

« Static analysis cannot infer all state or the
“Intent” of a programming construct

— Mark Dowd’s sendmail crackaddr() bug
— A while() loop expanding email address
— Semantics too abstracted for easy verification

* Dynamic analysis typically is underpinned by
an NP-complete problem

— As state-space grows, runtime quickly becomes
untenable

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Background: Crackaddr aIS

devastating capability, revolutionary advantage

» Halvar Flake/Thomas Dullien proposed this
as an example of a "hard problem™ for
verification

* Bug in while() loop expanding and matching
“("s and “<"s in email addresses

« Can be statically detected if looking for it,
hard in practice

18

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Background: Parsing

2 alsS

devastating capability, revolutionary advantage

* Term that should encapsulate all boundaries in a
program or interface where input is converted from

one format to another

— Reading in user input

— RPC calls

— Removing encapsulation

— Reading data from files/network into structured, typed data

« A data specification should be generated first, and
non-compliant input rejected!

See how happy she is the invalid data was rejected? >

19

| .
5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Background: Parser Differentials aIS

devastating capability, revolutionary advantage

* Once complexity of input language falls off the
undecidability cliff, intractable to determine if two
parsers for same specification will ingest the same
iInput identically
— Bitcoin’s OpenSSL ASN.1 BER parsing on 32 vs. 64 bit systems

— SSL certificate parsing in Mozilla Firefox
s R .

) e . *é.-\ ~
H » \'/ (. NN 20
' Baa 1% /

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Programming Conventions: MISRA-C aIS

devastating capability, revolutionary advantage

« Motor industry safety & reliability association’s C
programming guidelines for safety-critical code

— Used for automotive control code

« Many tools (FOSS & commercial) to valldate code
bases! E g

21

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Programming Conventions: JPL Top 10

2 als

devastating capability, revolutionary advantage

« NASA's JPL has a “top ten” for safety-critical code
— Goals: reduce defects, ease verification for code
running in space
— Other than a few for readability/clarity, they map nicely to
LangSec principles

— Next few slides will detail the conventions and their
theoretical underpinnings

22

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

JPL Top 10 aIS

devastating capability, revolutionary advantage

* Restrict to simple to verify control-flow where
possible (Rule #1)
— Eliminate/minimize gotos, longimps and recursion
— Makes the control-flow graph easier to analyze (acyclic)
— Forces more programmer “intent” into syntax

* All loops must have an upper bound on iterations
(Rule #2)

— Must be possible for analyzer to determine termination
(Walter recursion)

— Some loops should be provably non-terminating (e.g.,
scheduling loop)

23

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

JPL Top 10 1i aIS

devastating capability, revolutionary advantage

 Memory allocations should all be performed before
business logic execution (Rule #3)
— Makes the memory map easier to analyze

— Verification is easier when memory allocations are
guaranteed

— Optionally, valgrind and LD_PRELOAD a malloc()
wrapper that randomly fails

* Check all parameters in each function (Rule #7)
— Ensure a parser bug did not propagate malicious input
— Add fuzz testing to your unit testing QA step

24

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

JPL Top 10 Il aIS

devastating capability, revolutionary advantage

« Limit use of pointers (especially recursive pointers)
and disallow function pointers (Rule #9)

— Function pointers shift problems from compile-time to
run-time — this makes static analysis much less powerful

— Recursive pointers leads to unbounded computations
(€.., PDF specification) - ey DR A L

S0 1 MADE A POINTER THAT POINTS TII A POINTER THAT
POINTS TO A POINTER SO YOU CAN DEREFERENGE A
DEREFERENGE TO A DEREFERENCE

25

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Strict Parsing aIS

devastating capability, revolutionary advantage

* |nput data must be subjected to as much scrutiny
as code is by a compiler!

— When parsing is done in ad hoc fashion, the developers
assumptions may lead to vulnerabilities! jmige"

— Invalid input must be rejected!
— NEVER rewrite invalid input to “fix” it 3

* You are now allowing input to operate the weird machine you've
created

« Using a specified interface will ease interactions
between teams and components

— Jeff Bezos mandated that all Amazon software will act as
a “service”, lead to its dominance over the cloud market ..

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Verification-Oriented Paradigm aIS

devastating capability, revolutionary advantage

ol 1 4
000
| o]

* A meta development paradigm: aim to provide the
maximum semantic information about intent to
compiler and verification tools

— If looping, aim for induction variables to be clearly
identifiable (for/foreach instead of while)
« Can improve performance due to better loop unrolling
— Types should not be overloaded

« E.g., MISRA-C requires char only be used for a single character,
not for small integer values (which should be int8 t)

— Minimize data scope
« If an object cannot be referenced, cannot be corrupted

27

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Verification-Oriented Paradigm li aIS

devastating capability, revolutionary advantage

 Benefits of VOP:

— Code is more self-documenting, easier to read & review
— Verification is easier

— More bugs can be discovered at compile/unit testing time
rather than patching run-time code

28

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Verification-Oriented Paradigm il

Relative Cost to Fix an Emror

” - . — e . ——

Average Cost Ratio
"

Phase In Which Found

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | hitp://ainfosec.com

Verification-Oriented Paradigm IV aIS

devastating capability, revolutionary advantage

« Example of pushing bug detection to compile-time:
— if (variable == CONSTANT){ ...

— versus
— If (CONSTANT == variable) { ...

« Semantically equivalent when implemented
correctly

e |f the second = is omitted:

— First will compile, yielding unexpected results
— Second will fail to compile

30

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Reducing Complexity aIS

devastating capability, revolutionary advantage

* As security practitioners, we aim to implement the
“least privilege principle”

« “Don’t run your IRC client or browser as root”

« Computational power is a form of privilege, and
we’re running everything with “root”

— AV relies on having more privilege than malware
— Doesn’t work without defender’s advantage

31

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Reducing Complexity I See aIS

davastatina canabilitv revolutionary advantage

Orthogonal Models of Privilege

VM Exit Handler

VMM | ® 2
] Linux BPF INT# Handler

Ring-0 -] e} E
sudo -s

Root ® i
Crema program Browser

User | o o g

< (2 2 g 2
P & N & P >
b ot 2 e &2 Q
X 52 AN &
s* + Qgco@ &
&’0 Q}\ 00

32

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Reducing Complexity Il aIS

devastating capability, revolutionary advantage

 More complex programs lead to more bugs
— More chances of programmer error
— Less chances of detection in testing, QA and analysis

« JPL Rule #2 to limit looping will restrict state-space
growth, improving verification

 In IEEE LangSec workshop, Crema showed the
verification benefits from bounded execution
— Very few computations need unbounded looping

— Ex: seL4 manually segregated bounded and unbounded
to formally prove OS correctness

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Tools for Enforcement aIS

devastating capability, revolutionary advantage

« Development guidelines and coding conventions
are excellent so long as they are followed
— Need to have audit capabilities
— “Trust but verify”

* A good SDLC formalizes development process to
allow checks of compliance
— Code reviews
— Unit & functional testing
- QA
— Commit hooks & continuous integration tools .

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Tools for Enforcement aIS

devastating capability, revolutionary advantage

« Scale for effort and results:
— Protocol design with computational complexity in mind
— Programming conventions for maximum bounding
— Static analysis

— Runtime testing:
« Dynamic analysis
* Fuzzing
* Unit tests
— Production bug reporting / bug bounties

— Getting on front page of newspaper for breach

35

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Developing with Semantics aIS

devastating capability, revolutionary advantage

« Aim to put as much semantic mindset in your code
as possible

— For-each macro to create common looping structure

* Not only valuable for verification, also for readability

* Tools like cpp-check can help warn developers of
common traps

36

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

devastating capability, revolutionary advantage

Research project to create an open-source
compiler for a provably-halting programming
language and runtime

Based on LLVM, can be embedded in C for parsers

Familiar syntax

Demonstrated security benefits

37

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Strict Parsing aIS

devastating capability, revolutionary advantage

 Many mainstream parser generator frameworks are
designed with code in mind:

— Lex/Yacc
— ANTLR

« Can be used, but Hammer and Nom are designed
with data parsing in mind
— Simple parser constructor libraries in C and Rust,
respectively

38

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Strict Parsing |l aIS

devastating capability, revolutionary advantage

« Design your data format specifications early, get
buy-in from parties

— Similar to interface planning

* When planning specifications, consider the
complexity required to parse

— IPv6 fragmentation and extended attributes is
example

— Specification adds new features, but hard to
inspect while maintaining QoS

39

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

devastating capability, revolutionary advantage

* Nall is an effort by Julian Bangert et al to
automatically generate parsers from grammar

description
— Can reverse and output structured data to input format

— Automatically can handle length and offset fields

* Reduces the risk of implementation or security
concerns when parsing a structure into memory
from untrusted input (and all inputs should be
considered untrusted)

* Rejects invalid inputs 0

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

devastating capability, revolutionary advantage

« Create data format description, parsing function
and structure will be automatically generated

— Ambiguous parsing (e.g., whitespace) will
prevent reversing parsing steps
— Example: personnel database
 Employee ID: uint32
 Name: cstring
« Manager bool: uint1
 Remote employee: uint1

41

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

person

devastating capability, revolutionary advantage

{
id uint32

name <uint8='"'; many int8 | 'a'..'z'; uintB=""'>
manager uintl
remote uintl

records sepBy uintB=',' (many person)

42

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

devastating capability, revolutionary advantage

person *parse person(NailArena *arena, NailStream *data);
db *parse_db(NailArena *arena, NailStream *data);

int gen_ person(NailArena *tmp arena,NailOutStream *out, person * val);
int gen_db(NailArena *tmp arena, NailOutStream *out, db * val);

struct person {

uint32 t id; struct db {
struct { struct {
int8 t*elem; struct {
size_t count; person*elem;
} name; B size_t count;
r

}*elem;
size_t count;
} records;

uint8_ t manager;
uint8 t remote;

-

43

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

LLVM/Clang Static Analyzer aIS

devastating capability, revolutionary advantage

« Part of Apple’s Xcode IDE, but can be used on
other platforms in standalone mode

« scan-build replaces the CC environment variables
and performs static checks for common
programming errors

« scan-view provides web Ul to explore found bugs

44

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

LLVM/Clang Static Analyzer aIS

devastating capability, revolutionary advantage

* In checking for NULL from malloc, | “forgot”
to break out and handle the error

* Ran scan-build while building and then scan-
view to see the bug report:

45

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

LLVM/Clang Static Analyzer See aIS

devastating capability, revolutionary advantage

1 #include <stdlib.h>
2 #include <stdio.h>
3
4 int main(int argc, char **argv)
5 A
6 char *foo = malloc(32);
1 ‘'foo'initialized here —
7 if (1foo) {
2 <+« Assuming ‘foo'is null —
'8« Taking true branch —
8 fprintf(stderr, "Malloc returned 0!\r\n");
9 }
10 foo[31] = '\0';

4 <+« Array access (from variable ‘foo’) results in a null pointer dereference 46

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

LLVM/KLEE Dynamic Analyzer aIS

devastating capability, revolutionary advantage

 Another tool based on LLVM intermediate
representation

* Performs dynamic analysis through symbolic
computation to gain high-coverage of code

« Can find crash cases, or be used to verify semantic
equivalence between different code bases
— Can be used to check for parser differentials

47

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

LLVM/KLEE Dynamic Analyzer aIS

devastating capability, revolutionary advantage

Whenever a branch is reached, both paths are

executed, maintain the constraints on the input to
reach that state

int X,y,2;

If (x <Y)

SMT/SAT solver used to create concrete value

[PC: true] x=X,y=Y

[PC: true] X<Y?

true

[PC: X<Y] 2=Y

false

v

[PC: X>=Y]z= X

48

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

devastating capability, revolutionary advantage

* Fuzzer that compiles in instrumentation to improve
coverage
— Provides afl-gcc
— Provides tools to minimize crashing input case
— Can run distributed

* Provided input corpus will mutate

 Random, thus can get “trapped” in loops, hard to
“steer”

49

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

But wait! There’s more!

devastating capability, re

48 AMET

(N ‘i

THE POPE COMES TO AMERICA

POPE FRANCIS ARRIVES FOR U.S. BISHOPS' MEETING N

BAMA: POPE'S MESSAGE OF MERCY "MEANS WELCOMING THE STRANGER VAT THIS HOUR

_—

50

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Enforcement Tool: Sledge Hammer aIS

devastating capability, revolutionary advantage

“Absolutely Hllarn:lus'
— Entertair

THE COMPLETE SERIES

' aa IS

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

51

Enforcement Tool: Sledge Hammer aIS

devastating capability, revolutionary advantage

* Open source suite of tools that a sadistic program
manager can run on code base to audit compliance
and safety
— Could be added to ClI

« Combination of:
— LD PRELOAD to simulate memory management failures

— Header file with to poison “bad” ad hoc parsers and
semantically vague looping constructs

— Automatic symbolic testing for parameter verification on
every function

52

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

LD PRELOAD 9IS

devastating capability, revolutionary advantage

* Environment variable to temporary alter library load
order

* Allows easy override of library functions on existing
binaries
— $ LD_PRELOAD=./libsledge.so program

* malloc(), calloc(), realloc(), etc. can fail and return
NULL pointer, must be checked before dereference

— libsledge.so replaces these functions with ones that fail
with designated probability

53

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

LD_PRELOAD Il 121S

devastating capability, revolutionary advantage

 Demo

54

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Poison Pill aIS

devastating capability, revolutionary advantage

* Header file to be included (or with -include) that
“poisons” banned keywords
— Unsafe string operations

— While loops
— Non-strictly parsed input (e.g., cin/scanf)

« Will forbid compilation if keywords are found

« Rapid way to audit and quickly ensure compliance (or valid
reason for usage)

55

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

KLEE-Unit

devastating capability, revolutionary advantage

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

devastating capability, revolutionary advantage

In order to provide assurances that input is
sanitized and function arguments vetted

Framework to couple KLEE (symbolic execution)
with unit test methodology

Will identify all functions, their arguments and
create test harness for each to be SE'd

Crashes can be analyzed to determine cause and
fix .

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

devastating capability, revolutionary advantage

 Demo

58

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Sledgehammer Details aIS

devastating capability, revolutionary advantage

 https://github.com/ranok/sledgehammer

59

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Concluding Remarks aIS

devastating capability, revolutionary advantage

* At scale, and as perimeter grows weaker, network
security must shift to more hardened applications
— Alex Stamos: AppSec is “eating” security
— Jacob Torrey: LangSec is “eating” AppSec

* Google’s Beyond Corp shows that perimeter leads
to false sense of security, and that well-built
applications can stand on their own

* “To err is human; to be caught at compile-time;
divine” 0

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

Concluding Remarks |l aIS

devastating capability, revolutionary advantage

 Whatever languages and tooling your organization
uses, aiming to maximize the semantic quality and
verifiability will yield positive results

* Not just for security, but:

— Less expensive through reductions in run-time bugs (less
QA)

— Faster through more semantics for compilers to use
during optimization

« Currently state of software quality highlights need to
adjust strategy

61

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

devastating capability, revolutionary advantage

YOU COME TO ME AT
RUNTIME

TOJEITMET

CODE YOU'ARE
ENECUTING DOESNOT,COMPILE

gmegenerator.net

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

References al S

devastating capability, revolutionary advantage

 Alex Stamos talk:
— https://www.youtube.com/watch?v=-1kZMn1Ruel

AFL-fuzz:
— http://lcamtuf.coredump.cx/afl/
 Nalil:

— https://people.csail.mit.edu/nickolai/papers/bangert-nail-
langsec.pdf

e Nom:
— https://github.com/Geal/nom

e Hammer:
— https://github.com/UpstandingHackers/hammer

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

References ll aIS

devastating capability, revolutionary advantage

« LangSec:
— http://langsec.org/

JPL Top 10:
— http://spinroot.com/gerard/pdf/P10.pdf

MISRA-C:
— http://caxapa.ru/thumbs/468328/misra-c-2004.pdf

e Crema:
— http://spw15.langsec.org/papers.html#ver
Crackaddr():

— https://bytebucket.org/mihaila/bindead/wiki/resources/
crackaddr-talk.pdf

5460 S. Quebec St, Suite 300, Greenwood Village, CO 80111 | +1 315.240.0127 | http://ainfosec.com

