
Assured Information Security, Inc.
&

Dartmouth College

Crema
A LangSec-Inspired Programming Language

Jacob Torrey (@JacobTorrey) & Sergey Bratus (@sergeybratus)
torreyj@ainfosec.com & sergey@cs.dartmouth.edu

August 4, 2015

1

Outline

Introduction

Motivation / Background

Proposed Solution

Crema Language
Crema Execution Model/Emulation Tricks
JIT Unrolling
Integration of Crema and Traditional Languages

Qmail SMTP Parser Case Study

Sendmail Bug

Conclusions

Torrey & Bratus | Crema: A LangSec Language

2

Thesis

In a Nutshell
Programming languages provide more computational power than
most programmers need, LangSec has shown that in this excess
expressiveness lurks weird machines, difficulties of verification and
state-space explosion.

By providing a language that forces programmers to more accurately
express their intent, security wins are possible!

Torrey & Bratus | Crema: A LangSec Language

3

Who we are

@JacobTorrey
I Advising Engineer as Assured

Information Security
I Leads Computer

Architectures group
I Plays in x86 rings ≤ 0
I Ultra-runner/cyclist, traveler

and foodie

@SergeyBratus
I Professor at Dartmouth

College
I Co-founder of LangSec field
I Chair of IEEE S&P LangSec

Workshop
I Had to miss at last minute :(

Torrey & Bratus | Crema: A LangSec Language

4

Some Definitions

I Turing Complete (TC) — If a system can simulate the
widely-known Turing machine; computers today are finite,
physical Turing machines

I Halting Problem — A classic problem in computer science that it
is provably undecidable in general to determine if a program will
halt on a given input

Torrey & Bratus | Crema: A LangSec Language

5

Some Definitions (cont.)

I “Undecidablity Cliff” — The more complex an execution
environment is, the more difficult to analyze; eventually
complexity reaches a “cliff” that is impossible to recover from

I Chomsky Hierarchy — A hierarchy of formal language classes of
complexity and the corresponding automatons which will
accept/recognize them

Torrey & Bratus | Crema: A LangSec Language

6

What is LangSec

In a nutshell:

Language-Theoretical Security
Internet insecurity is a consequence of ad hoc programming of input
handling at all layers of network stacks, and in other kinds of software
stacks. LangSec posits that the only path to trustworthy software that
takes untrusted inputs is treating all expected inputs as a formal
language, and the respective input-handling routines as a recognizer
for that language.

Torrey & Bratus | Crema: A LangSec Language

7

Ok... What...

We’ve built the internet on faith that developers will properly sanitize
inputs, and trusted them the full power of Turing completeness. Like
letting an unproven 16 year old drive a Ferrari.

Torrey & Bratus | Crema: A LangSec Language

8

LangSec Perspective

I The story of InfoSec: code meets input, code goes crazy,
computation “elopes” beyond wildest expectations

I Static analysis of binary code for effects of (complex enough)
inputs is typically intractable

I Undecidable for Turing-complete cases, intended or accidental
I State explosion even when technically decidable

I (Complex enough) inputs are Turing-complete on the
code/processor/execution model that handles them

I Weird machines: examples of unexpected emergent
computation/programming models driven by input that seems to be
purely “data” or “tables”

Torrey & Bratus | Crema: A LangSec Language

9

Data Drives Execution

“The illusion that your program is manipulating its data is powerful.
But it is an illusion: The data is controlling your program.”

“Any input is a program”
A complex data format is indistinguishable from bytecode, its handling
code from a VM [Java-like, not VMWare-like] for that bytecode.

(apologies to A. Clarke)

Your input elements are an ISA; your code is a processor for that ISA.
Pray it’s exactly as powerful as you intended, and not more.

I “How will this input byte change the state of my system?”
–almost no one, ever

Torrey & Bratus | Crema: A LangSec Language

10

The Gap

There is a huge gap between the programmer’s model and the
execution model. It’s likely big enough for Turing-completeness.

It’s almost like the State of California, which knows that almost every
place or thing is dangerous to your health.

Bad for your computer’s trustworthiness:
I features in your CPU
I features in your programming language’s standard library (“%n”,

anyone?)
I features in your compiler’s optimizer
I etc...

Torrey & Bratus | Crema: A LangSec Language

11

The Angle

LangSec-perfect
You should co-design your data and code/execution logic to yield
predictable computation & tractable analysis on every input.

But what if you can’t? Then the Turing Beast will likely free—and
devour your chances of static analysis of input’s effects.

Our approach
Limit the power of the processor, to gain better static predictability of
inputs’ effects. Compile to it from a language that is deliberately not
Turing-complete.

An input-handler/parser that is accidentally TC on a complex data
format will (and should) be hard to write.

Torrey & Bratus | Crema: A LangSec Language

12

Least Computational Privilege

DJB in “10 Years of Qmail”: Least Privilege is a distraction.

Updated Least Privilege Principle
Computational power exposed to attacker is privilege. Minimize it.

This is not to inveigh on general-purpose computing. LCPP belongs
at communication boundaries between TC systems:

“Your CPU needs to be able to perform arbitrary computation. ICMP
ECHO does not. So that’s an important distinction, and do please
keep it in mind.”

Meredith L. Patterson, “Science of Insecurity”, 28C3

Torrey & Bratus | Crema: A LangSec Language

13

Sub-Turing Execution
Like Language, Like Processor

The sub-Turing programming language must make it hard to express
what’s hard to analyze.

I It must compile to an execution model where hard to analyze is
hard to compile to.

I It must still resemble C well enough, because programmers don’t
fall from the sky.

Torrey & Bratus | Crema: A LangSec Language

14

Peter Pan of Programming

Example
A crocodile (allegedly) never turns back. How about a processor that
never takes a backward jump. No loops => no TC

Combine this with an upper limit on execution steps. Captain Hook
would have a much easier time evading a time-limited crocodile.

Torrey & Bratus | Crema: A LangSec Language

15

A Sub-Turing Language

I These questions led us to a six-month DARPA seedling under
I2O

I Designed with minimum power needed to perform most
programming tasks

I Provably terminating in countable time (Walther recursion)
I No issues with Halting Problem
I Forbids unbounded loops, unbounded [co]-recursion
I Targets LLVM compiler tool-chain for ease of integration
I Easy to develop in and small learning curve

Torrey & Bratus | Crema: A LangSec Language

16

Language Limitations

Obviously, Crema is not the right tool for every task, there are some
programming tasks that require the full computational
expressiveness:

I Cannot support unbounded looping
I Not for scheduling loops or REPL/server loops, e.g.:

I Apache server listen loop
I OS scheduler
I User-driven programs/UI

I Can be used as dispatch tasklets, still needs a TC controller
However, most programs are the composition of a very few TC
components and a lot of parsers and data-analysis methods. By
replacing those with a sub-TC environment, your attack surface is
minimized.

Torrey & Bratus | Crema: A LangSec Language

17

Language Fundamentals

I Strongly-typed, C-like language
I Can use LLVM FFI to call into (or be called from) other languages
I Can express what is known as a parser or a transducer,

converting input from one format to another
I Transducers should take a polynomial function of time w.r.t input

length, should not be undecidable

Torrey & Bratus | Crema: A LangSec Language

18

Sample Crema Program

i n t hundred [] = crema_seq (1 , 100)

foreach (hundred as i) {
i n t _ p r i n t (i)
s t r _ p r i n t (" ")
i f (i % 3 == 0) {

s t r _ p r i n t (" F izz ")
}
i f (i % 5 == 0) {

s t r _ p r i n t (" Buzz ")
}

s t r _ p r i n t l n (" ")
}

Torrey & Bratus | Crema: A LangSec Language

19

Not so bad, huh

Designed to be approachable for developers and familiar-looking
I Supports structs and arrays
I Automatically manage
I Common boolean and bitwise operators
I Looping construct is the foreach loop, to iterate through a finite

list or sequence generated with crema_seq (e.g., crema_seq(1,
3) = [1, 2, 3])

Torrey & Bratus | Crema: A LangSec Language

20

Future Work

Crema is very young still (looking for your input!) and as such has
some rough edges and missing features. Future work on improving
Crema includes:

I Objects and classes
I Integration of a parser generator as the only method for reading

input
I Stronger standard library
I Syntactic sugar for cleaning up duck typing and conversion

Torrey & Bratus | Crema: A LangSec Language

21

Formal Model

Based on a classical Turing Machine model with a modified transition
function:

Modified Transition Function
Transition function δ is limited in such a way that it cannot return to an
already-visited state:

δ : (Q \ F)× Γ→ Q′ × Γ× {L,R}

Where:
I Q is the finite set of states
I F is the set of terminating states
I Γ is the symbol alphabet
I {L,R} denote moving the tape reader head left or right
I Q′ is the new set of states Q′ : Q \ qc where qc is the current

state

Torrey & Bratus | Crema: A LangSec Language

22

Forward-only Execution

Great, but what does that mean?
I Imagine a CPU that can only execute forward (i.e., to higher

memory addresses)
I Naturally, program will terminate in finite time
I Enforces bound on state-space explosion to verify (number of

branches in program)
I But this removes looping and function calls...

Torrey & Bratus | Crema: A LangSec Language

23

JIT Unrolling

I Using the notion of “just-in-time compilation”, a program can be
instanciated from an abstract program

I Loops and funtions are unrolled and inserted JIT
I Using the program input as guide for number of iterations to

unroll
I Supports Walther recursion
I Program analysis can still operate in the forward-only execution

model, abstracted to develop full-featured programs

Torrey & Bratus | Crema: A LangSec Language

24

Embedding Crema in Programs

I cremacc creates LLVM IR “assembly”
I Ideal is to use Crema for parser and input-driven handlers
I Can call into other languages, can be called from other

languages (can break sub-TC guarantees)
I LLVM IR can be optimized and analyzed by existing tools

Torrey & Bratus | Crema: A LangSec Language

25

QMail

I DJB’s mail daemon, designed for security, has open security
bounty (one award in years)

I Target of Halvar Flake and Julien Vanegue’s automatic exploit
generation research to find bugs

I Parser is highly isolated from main program logic
I Parser was analyzed by KLEE (symbolic execution engine) to

measure code coverage & running time
I Re-wrote parser in Crema, and repeated analysis

Torrey & Bratus | Crema: A LangSec Language

26

Results

Crema greatly reduced the state-space explosion inherent to program
analysis:

Torrey & Bratus | Crema: A LangSec Language

27

Results II

Bounded state-space to search grows much more slowly than
unbounded:

Torrey & Bratus | Crema: A LangSec Language

28

Results III

Bounded execution provides higher code coverage by naive verifier:

Torrey & Bratus | Crema: A LangSec Language

29

Mark Dowd’s Sendmail Bug

I Address parser to ensure that parentheses and brackets are not
nested and the email address is valid

I Reserved space in output buffer to ensure that no overflow could
occur if they were unmatched

I Mark found 2003 that a pointer failed to be decremented, leading
to an overflow, Halvar used as a verification challenge problem

I WOOT 2012 Julien Vanegue et al proposed this as a solvable
verification problem if the analyst knew the nature of the bug

I Hard to generically see “badness” on unbounded loops (while
loop)

Torrey & Bratus | Crema: A LangSec Language

30

How Crema Could Help

I Crema would limit the bounds
on the loop to a function of
email address length

I Program verification tools
could detect if the program
would write outside its bounds

I Programmer’s intent is more
naturally expressed as a
function of the input length
rather than a while loop

I This is a perfect use-case for
Crema, a parser that under all
circumstances should
terminate (transducer)

Torrey & Bratus | Crema: A LangSec Language

31

Use-cases

I Useful for “reducing the length of the rope programmers can
hang themselves with”

I A computationally bounded attacker is a weaker attacker
I Parsing and other input-driven routines should have no need for

full unbounded loops/TC
I The Crema model makes program analysis easier automatically,

through state-space reduction and easier constructs to analyze

Torrey & Bratus | Crema: A LangSec Language

32

Wrap-up

I Crema is open source (thanks DARPA!)
I Code, examples and documentation available at

http://www.crema-lang.org
I We hope you will check it out, hack on it, submit patch requests

and start using it
I By using Crema, your software will “magically” be easier to

analyze and safer

Torrey & Bratus | Crema: A LangSec Language

33

Questions?

Thanks for your time! Don’t hesitate to reach out to us on Twitter!

Torrey & Bratus | Crema: A LangSec Language

	Introduction
	Motivation / Background
	Proposed Solution
	Crema Language
	Crema Execution Model/Emulation Tricks
	JIT Unrolling
	Integration of Crema and Traditional Languages

	Qmail SMTP Parser Case Study
	Sendmail Bug
	Conclusions

